
CONSENSUS: BRIDGING THEORY AND PRACTICE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Diego Ongaro

August 2014

 http://creativecommons.org/licenses/by/3.0/us/

This dissertation is online at: http://purl.stanford.edu/qr033xr6097

© 2014 by Diego Andres Ongaro. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
3.0 United States License.

ii

http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/
http://purl.stanford.edu/qr033xr6097

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

John Ousterhout, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

David Mazieres

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mendel Rosenblum

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

Distributed consensus is fundamental to building fault-tolerant systems. It allows a collection of

machines to work as a coherent group that can survive the failures of some of its members. Unfortu-

nately, the most common consensus algorithm, Paxos, is widely regarded as difficult to understand

and implement correctly.

This dissertation presents a new consensus algorithm called Raft, which was designed for un-

derstandability. Raft first elects a server as leader, then concentrates all decision-making onto the

leader. These two basic steps are relatively independent and form a better structure than Paxos,

whose components are hard to separate. Raft elects a leader using voting and randomized timeouts.

The election guarantees that the leader already stores all the information it needs, so data only flows

outwards from the leader to other servers. Compared to other leader-based algorithms, this reduces

mechanism and simplifies the behavior. Once a leader is elected, it manages a replicated log. Raft

leverages a simple invariant on how logs grow to reduce the algorithm’s state space and accomplish

this task with minimal mechanism.

Raft is also more suitable than previous algorithms for real-world implementations. It performs

well enough for practical deployments, and it addresses all aspects of building a complete system,

including how to manage client interactions, how to change the cluster membership, and how to

compact the log when it grows too large. To change the cluster membership, Raft allows adding or

removing one server at a time (complex changes can be composed from these basic steps), and the

cluster continues servicing requests throughout the change.

We believe that Raft is superior to Paxos and other consensus algorithms, both for educational

purposes and as a foundation for implementation. Results from a user study demonstrate that Raft

is easier for students to learn than Paxos. The algorithm has been formally specified and proven,

its leader election algorithm works well in a variety of environments, and its performance is equiv-

alent to Multi-Paxos. Many implementations of Raft are now available, and several companies are

deploying Raft.

iv

Preface

This dissertation expands on a paper written by Diego Ongaro and John Ousterhout entitled In

Search of an Understandable Consensus Algorithm [89]. Most of the paper’s content is included in

some form in this dissertation. It is reproduced in this dissertation and licensed under the Creative

Commons Attribution license with permission from John Ousterhout.

Readers may want to refer to the Raft website [92] for videos about Raft and an interactive visual-

ization of Raft.

v

Acknowledgments

Thanks to my family and friends for supporting me throughout the ups and downs of grad school.

Mom, thanks for continuously pushing me to do well academically, even when I didn’t see the point.

I still don’t know how you got me out of bed at 6 a.m. all those mornings. Dad, thanks for helping us

earn these six (seven?) degrees, and I hope we’ve made you proud. Zeide, I wish I could give you a

copy of this small book for your collection. Ernesto, thanks for sparking my interest in computers; I

still think they’re pretty cool. Laura, I’ll let you know if and when I discover a RAMCloud. Thanks

for listening to hours of my drama, even when you didn’t understand the nouns. Jenny, thanks for

helping me get through the drudgery of writing this dissertation and for making me smile the whole

way through. You’re crazy for having wanted to read this, and you’re weird for having enjoyed it.

I learned a ton from my many labmates, both in RAMCloud and in SCS. Deian, I don’t know

why you always cared about my work; I never understood your passion for that IFC nonsense, but

keep simplifying it until us mortals can use it. Ankita, you’ve single-handedly increased the lab’s

average self-esteem and optimism by at least 20%. I’ve watched you learn so much already; keep

absorbing it all, and I hope you’re able to see how far you’ve come. Good luck with your role as the

new Senior Student. Thanks especially to Ryan and Steve, with whom I formed the first generation

of RAMCloud students. Ryan, believe it or not, your optimism helped. You were always excited

about wacky ideas, and I always looked forward to swapping CSBs (“cool story, bro”) with you.

You’ll make a great advisor. Steve, I miss your intolerance for bullshit, and I strive to match your

standards for your own engineering work. You continuously shocked the rest of us with those silent

bursts of productivity, where you’d get quarter-long projects done over a single weekend. You guys

also figured out all the program requirements before I did and told me all the tricks. I continue

to follow your lead even after you’ve moved on. (Ryan, you incorrectly used the British spelling

“acknowledgements” rather than the American “acknowledgments”. Steve, you did too, but you’re

just Canadian, not wrong.)

Thanks to the many professors who have advised me along the way. John Ousterhout, my Ph.D.

vi

advisor, should be a coauthor on this dissertation (but I don’t think they would give me a degree that

way). I have never learned as much professionally from any other person. John teaches by setting a

great example of how to code, to evaluate, to design, to think, and to write well. I have never quite

been on David Mazières’s same wavelength; he’s usually 10–30 minutes ahead in conversation.

As soon as I could almost keep up with him regarding consensus, he moved on to harder Byzantine

consensus problems. Nevertheless, David has looked out for me throughout my years in grad school,

and I’ve picked up some of his passion for building useful systems and, more importantly, having fun

doing so. Mendel Rosenblum carries intimate knowledge of low level details like x86 instruction set,

yet also manages to keep track of the big picture. He’s helped me with both over the years, surprising

me with how quickly he can solve my technical problems and how clear my predicaments are when

put into his own words. Thanks to Christos Kozyrakis and Stephen Weitzman for serving on my

defense committee, and thanks to Alan Cox and Scott Rixner for introducing me to research during

my undergraduate studies at Rice.

Many people contributed directly to this dissertation work. A special thanks goes to David

Mazières and Ezra Hoch for each finding a bug in earlier versions of Raft. David emailed us one

night at 2:45 a.m. as he was reading through the Raft lecture slides for the user study. He wrote

that he found “one thing quite hard to follow in the slides,” which turned out to be a major issue

in Raft’s safety. Ezra found a liveness bug in membership changes. He posted to the Raft mailing

list, “What if the following happens?” [35], and described an unfortunate series of events that could

leave a cluster unable to elect a leader. Thanks also to Hugues Evrard for finding a small omission

in the formal specification.

The user study would not have been possible without the support of Ali Ghodsi, David Mazières,

and the students of CS 294-91 at Berkeley and CS 240 at Stanford. Scott Klemmer helped us design

the user study, and Nelson Ray advised us on statistical analysis. The Paxos slides for the user study

borrowed heavily from a slide deck originally created by Lorenzo Alvisi.

Many people provided feedback on other content in this dissertation. In addition to my reading

committee, Jennifer Wolochow provided helpful comments on the entire dissertation. Blake Mizer-

any, Xiang Li, and Yicheng Qin at CoreOS pushed me to simplify the membership change algorithm

towards single-server changes. Anirban Rahut from Splunk pointed out that membership changes

may be needlessly slow when a server joins with an empty log. Laura Ongaro offered helpful feed-

back on the user study chapter. Asaf Cidon helped direct me in finding the probability of split votes

during elections. Eddie Kohler helped clarify the trade-offs in Raft’s commitment rule, and Ma-

ciej Smoleński pointed out that because of it, if a leader were to restart an unbounded number of

vii

times before it could mark entries committed, its log could grow without bound (see Chapter 11).

Alexander Shraer helped clarify how membership changes work in Zab.

Many people provided helpful feedback on the Raft paper and user study materials, including Ed

Bugnion, Michael Chan, Hugues Evrard, Daniel Giffin, Arjun Gopalan, Jon Howell, Vimalkumar

Jeyakumar, Ankita Kejriwal, Aleksandar Kracun, Amit Levy, Joel Martin, Satoshi Matsushita, Oleg

Pesok, David Ramos, Robbert van Renesse, Mendel Rosenblum, Nicolas Schiper, Deian Stefan, An-

drew Stone, Ryan Stutsman, David Terei, Stephen Yang, Matei Zaharia, 24 anonymous conference

reviewers (with duplicates), and especially Eddie Kohler for shepherding the Raft paper.

Werner Vogels tweeted a link to an early draft of the Raft paper, which gave Raft significant

exposure. Ben Johnson and Patrick Van Stee both gave early talks on Raft at major industry confer-

ences.

This work was supported by the Gigascale Systems Research Center and the Multiscale Systems

Center, two of six research centers funded under the Focus Center Research Program, a Semiconduc-

tor Research Corporation program, by STARnet, a Semiconductor Research Corporation program

sponsored by MARCO and DARPA, by the National Science Foundation under Grant No. 0963859,

and by grants from Facebook, Google, Mellanox, NEC, NetApp, SAP, and Samsung. Diego Ongaro

was supported by The Junglee Corporation Stanford Graduate Fellowship. James Myers at Intel

donated several SSDs used in benchmarking.

viii

Contents

Abstract iv

Preface v

Acknowledgments vi

Contents ix

List of tables xiv

List of figures xv

1 Introduction 1

2 Motivation 5
2.1 Achieving fault tolerance with replicated state machines 5

2.2 Common use cases for replicated state machines 7

2.3 What’s wrong with Paxos? . 8

3 Basic Raft algorithm 11
3.1 Designing for understandability . 11

3.2 Raft overview . 12

3.3 Raft basics . 14

3.4 Leader election . 16

3.5 Log replication . 17

3.6 Safety . 22

3.6.1 Election restriction . 22

ix

3.6.2 Committing entries from previous terms 24

3.6.3 Safety argument . 24

3.7 Follower and candidate crashes . 26

3.8 Persisted state and server restarts . 27

3.9 Timing and availability . 27

3.10 Leadership transfer extension . 28

3.11 Conclusion . 30

4 Cluster membership changes 32
4.1 Safety . 33

4.2 Availability . 36

4.2.1 Catching up new servers . 37

4.2.2 Removing the current leader . 39

4.2.3 Disruptive servers . 40

4.2.4 Availability argument . 42

4.3 Arbitrary configuration changes using joint consensus 43

4.4 System integration . 45

4.5 Conclusion . 46

5 Log compaction 48
5.1 Snapshotting memory-based state machines . 51

5.1.1 Snapshotting concurrently . 52

5.1.2 When to snapshot . 54

5.1.3 Implementation concerns . 55

5.2 Snapshotting disk-based state machines . 57

5.3 Incremental cleaning approaches . 58

5.3.1 Basics of log cleaning . 59

5.3.2 Basics of log-structured merge trees . 60

5.3.3 Log cleaning and log-structured merge trees in Raft 60

5.4 Alternative: leader-based approaches . 62

5.4.1 Storing snapshots in the log . 62

5.4.2 Leader-based approach for very small state machines 63

5.5 Conclusion . 64

x

6 Client interaction 66
6.1 Finding the cluster . 66

6.2 Routing requests to the leader . 68

6.3 Implementing linearizable semantics . 69

6.4 Processing read-only queries more efficiently . 72

6.4.1 Using clocks to reduce messaging for read-only queries 73

6.5 Conclusion . 75

7 Raft user study 76
7.1 Study questions and hypotheses . 77

7.2 Discussion about the methods . 78

7.2.1 Participants . 79

7.2.2 Teaching . 81

7.2.3 Testing understanding . 83

7.2.4 Grading . 85

7.2.5 Survey . 86

7.2.6 Pilots . 86

7.3 Methods . 87

7.3.1 Study design . 87

7.3.2 Participants . 87

7.3.3 Materials . 88

7.3.4 Dependent measures . 91

7.3.5 Procedure . 91

7.4 Results . 91

7.4.1 Quizzes . 93

7.4.2 Survey . 101

7.5 Discussion about the experimental approach . 106

7.6 Conclusion . 110

8 Correctness 111
8.1 Formal specification and proof for basic Raft algorithm 112

8.2 Discussion of prior verification attempts . 114

8.3 Building correct implementations . 115

8.4 Conclusion . 116

xi

9 Leader election evaluation 117
9.1 How fast will Raft elect a leader with no split votes? 118

9.2 How common are split votes? . 122

9.3 How fast will Raft elect a leader when split votes are possible? 129

9.4 How fast will the complete Raft algorithm elect a leader in real networks? 132

9.5 What happens when logs differ? . 136

9.6 Preventing disruptions when a server rejoins the cluster 136

9.7 Conclusion . 137

10 Implementation and performance 139
10.1 Implementation . 139

10.1.1 Threaded architecture . 139

10.2 Performance considerations . 141

10.2.1 Writing to the leader’s disk in parallel . 141

10.2.2 Batching and pipelining . 142

10.3 Preliminary performance results . 144

10.4 Conclusion . 146

11 Related work 147
11.1 Overview of consensus algorithms . 147

11.1.1 Paxos . 147

11.1.2 Leader-based algorithms . 149

11.2 Leader election . 150

11.2.1 Detecting and neutralizing a failed leader 150

11.2.2 Selecting a new leader and ensuring it has all committed entries 151

11.3 Log replication and commitment . 153

11.4 Cluster membership changes . 155

11.4.1 α-based approaches . 156

11.4.2 Changing membership during leader election 157

11.4.3 Zab . 159

11.5 Log compaction . 160

11.6 Replicated state machines vs. primary copy approach 161

11.7 Performance . 162

11.7.1 Reducing leader bottleneck . 164

xii

11.7.2 Reducing number of servers (witnesses) 166

11.7.3 Avoiding persistent storage writes . 168

11.8 Correctness . 168

11.9 Understandability . 169

12 Conclusion 171
12.1 Lessons learned . 173

12.1.1 On complexity . 173

12.1.2 On bridging theory and practice . 173

12.1.3 On finding research problems . 174

12.2 Final comments . 175

A User study materials 176
A.1 Raft quiz . 176

A.2 Paxos quiz . 184

A.3 Survey . 191

A.4 Supporting materials . 195

B Safety proof and formal specification 201
B.1 Conventions . 201

B.2 Specification . 202

B.3 Proof . 215

Bibliography 230

xiii

List of tables

7.1 Raft user study: study participation . 80

7.2 Raft user study: lecture lengths . 89

7.3 Raft user study: linear model of quiz grades, including school factor 99

7.4 Raft user study: linear model of quiz grades, excluding school factor 99

9.1 Leader election evaluation: summary of variables 120

9.2 Leader election evaluation: experimental setup for benchmark 132

10.1 Implementation and performance: experimental setup 144

11.1 Related work: summary of how different algorithms select a new leader 152

11.2 Related work: approaches to reduce the servers involved in each decision 167

xiv

List of figures

2.1 Motivation: replicated state machine architecture 6

2.2 Motivation: common patterns for using a single replicated state machine 7

2.3 Motivation: partitioned large-scale storage system using consensus 8

2.4 Motivation: summary of the single-decree Paxos protocol 9

3.1 Basic Raft algorithm: algorithm summary . 13

3.2 Basic Raft algorithm: key properties . 14

3.3 Basic Raft algorithm: server states . 15

3.4 Basic Raft algorithm: terms . 15

3.5 Basic Raft algorithm: log structure . 18

3.6 Basic Raft algorithm: log inconsistencies . 20

3.7 Basic Raft algorithm: commitment rule . 23

3.8 Basic Raft algorithm: existence of voter in safety argument 25

4.1 Cluster membership changes: RPCs to change cluster membership 33

4.2 Cluster membership changes: safety challenge . 34

4.3 Cluster membership changes: adding/removing one server maintains overlap 34

4.4 Cluster membership changes: how adding servers can put availability at risk 37

4.5 Cluster membership changes: rounds in server catchup algorithm 38

4.6 Cluster membership changes: example of progress depending on removed server . 40

4.7 Cluster membership changes: example of disruptive server 41

4.8 Cluster membership changes: joint consensus timeline 44

5.1 Log compaction: summary of approaches . 49

5.2 Log compaction: memory-based snapshotting approach 52

5.3 Log compaction: InstallSnapshot RPC . 53

xv

5.4 Log compaction: approaches to log cleaning in Raft 61

5.5 Log compaction: alternative: snapshot stored in log 63

6.1 Client interaction: summary of RPCs . 67

6.2 Client interaction: example of incorrect results for duplicated command 70

6.3 Client interaction: lease mechanism for read-only queries 74

7.1 Raft user study: example lecture slide with stylus overlay 89

7.2 Raft user study: quiz score CDF . 92

7.3 Raft user study: quiz score scatter plot (by school) 94

7.4 Raft user study: quiz score scatter plot (by prior Paxos exposure) 95

7.5 Raft user study: CDF of participants’ quiz score difference 96

7.6 Raft user study: ordering effects . 97

7.7 Raft user study: quiz score CDFs by question difficulty and ordering 100

7.8 Raft user study: quiz score CDFs by question . 102

7.9 Raft user study: prior Paxos experience survey . 103

7.10 Raft user study: fairness survey . 104

7.11 Raft user study: preferences survey . 105

9.1 Leader election evaluation: leader election timeline with no split votes 119

9.2 Leader election evaluation: earliest timeout example 119

9.3 Leader election evaluation: earliest timeout CDF 121

9.4 Leader election evaluation: split vote example with fixed latency 123

9.5 Leader election evaluation: split vote probability with fixed network latency 126

9.6 Leader election evaluation: split vote probability with variable network latency . . 128

9.7 Leader election evaluation: expected overall election time 131

9.8 Leader election evaluation: benchmark results on LAN cluster 133

9.9 Leader election evaluation: election performance on a simulated WAN cluster . . . 135

9.10 Leader election evaluation: election performance with differing logs 135

10.1 Implementation and performance: threaded architecture 140

10.2 Implementation and performance: optimized request processing pipeline 142

10.3 Implementation and performance: preliminary measurements of LogCabin 145

11.1 Related work: differences in how new leaders replicate existing entries 154

xvi

11.2 Related work: primary copy architecture . 161

A.1 User study materials: Raft summary . 196

A.2 User study materials: Paxos summary, page 1 of 4 197

A.3 User study materials: Paxos summary, page 2 of 4 198

A.4 User study materials: Paxos summary, page 3 of 4 199

A.5 User study materials: Paxos summary, page 4 of 4 200

xvii

Chapter 1

Introduction

Today’s datacenter systems and applications run in highly dynamic environments. They scale out

by leveraging the resources of additional servers, and they grow and shrink according to demand.

Server and network failures are also commonplace: about 2–4% of disk drives fail each year [103],

servers crash about as often [22], and tens of network links fail every day in modern datacenters [31].

As a result, systems must deal with servers coming and going during normal operations. They

must react to changes and adapt automatically within seconds; outages that are noticeable to hu-

mans are typically not acceptable. This is a major challenge in today’s systems; failure handling,

coordination, service discovery, and configuration management are all difficult in such dynamic

environments.

Fortunately, distributed consensus can help with these challenges. Consensus allows a collection

of machines to work as a coherent group that can survive the failures of some of its members.

Within a consensus group, failures are handled in a principled and proven way. Because consensus

groups are highly available and reliable, other system components can use a consensus group as

the foundation for their own fault tolerance. Thus, consensus plays a key role in building reliable

large-scale software systems.

When we started this work, the need for consensus was becoming clear, but many systems still

struggled with problems that consensus could solve. Some large-scale systems were still limited by

a single coordination server as a single point of failure (e.g., HDFS [81, 2]). Many others included

ad hoc replication algorithms that handled failures unsafely (e.g., MongoDB and Redis [44]). New

systems had few options for readily available consensus implementations (ZooKeeper [38] was the

most popular), forcing systems builders to conform to one or build their own.

Those choosing to implement consensus themselves usually turned to Paxos [48, 49]. Paxos had

1

CHAPTER 1. INTRODUCTION 2

dominated the discussion of consensus algorithms over the last two decades: most implementations

of consensus were based on Paxos or influenced by it, and Paxos had become the primary vehicle

used to teach students about consensus.

Unfortunately, Paxos is quite difficult to understand, in spite of numerous attempts to make

it more approachable. Furthermore, its architecture requires complex changes to support practical

systems, and building a complete system based on Paxos requires developing several extensions for

which the details have not been published or agreed upon. As a result, both system builders and

students struggle with Paxos.

The two other well-known consensus algorithms are Viewstamped Replication [83, 82, 66] and

Zab [42], the algorithm used in ZooKeeper. Although we believe both of these algorithms are in-

cidentally better in structure that Paxos for building systems, neither has explicitly made this argu-

ment; they were not designed with simplicity or understandability as a primary goal. The burden of

understanding and implementing these algorithms is still too high.

Each of these consensus options was difficult to understand and difficult to implement. Unfor-

tunately, when the cost of implementing consensus with proven algorithms was too high, systems

builders were left with a tough decision. They could avoid consensus altogether, sacrificing the fault

tolerance or consistency of their systems, or they could develop their own ad hoc algorithm, often

leading to unsafe behavior. Moreover, when the cost of explaining and understanding consensus

was too high, not all instructors attempted to teach it, and not all students succeeded in learning it.

Consensus is as fundamental as two-phase commit; ideally, as many students should learn it (even

though consensus is fundamentally more difficult).

After struggling with Paxos ourselves, we set out to find a new consensus algorithm that could

provide a better foundation for system building and education. Our approach was unusual in that our

primary goal was understandability: could we define a consensus algorithm for practical systems

and describe it in a way that is significantly easier to learn than Paxos? Furthermore, we wanted

the algorithm to facilitate the development of intuitions that are essential for system builders. It was

important not just for the algorithm to work, but for it to be obvious why it works.

This algorithm also had to be complete enough to address all aspects of building a practical

system, and it had to perform well enough for practical deployments. The core algorithm not only

had to specify the effects of receiving a message but also describe what should happen and when;

these are equally important for systems builders. Similarly, it had to guarantee consistency, and it

also had to provide availability whenever possible. It also had to address the many aspects of a

system that go beyond reaching consensus, such as changing the members of the consensus group.

CHAPTER 1. INTRODUCTION 3

These are necessary in practice, and leaving this burden to systems builders would risk ad hoc,

suboptimal, or even incorrect solutions.

The result of this work is a consensus algorithm called Raft. In designing Raft we applied

specific techniques to improve understandability, including decomposition (Raft separates leader

election, log replication, and safety) and state space reduction (Raft reduces the degree of nonde-

terminism and the ways servers can be inconsistent with each other). We also addressed all of the

issues needed to build a complete consensus-based system. We considered each design choice care-

fully, not just for the benefit of our own implementation but also for the many others we hope to

enable.

We believe that Raft is superior to Paxos and other consensus algorithms, both for educational

purposes and as a foundation for implementation. It is simpler and more understandable than other

algorithms; it is described completely enough to meet the needs of a practical system; it has several

open-source implementations and is used by several companies; its safety properties have been

formally specified and proven; and its efficiency is comparable to other algorithms.

The primary contributions of this dissertation are as follows:

• The design, implementation, and evaluation of the Raft consensus algorithm. Raft is similar

in many ways to existing consensus algorithms (most notably, Oki and Liskov’s Viewstamped

Replication [83, 66]), but it is designed for understandability. This led to several novel fea-

tures. For example, Raft uses a stronger form of leadership than other consensus algorithms.

This simplifies the management of the replicated log and makes Raft easier to understand.

• The evaluation of Raft’s understandability. A user study with 43 students at two universities

shows that Raft is significantly easier to understand than Paxos: after learning both algorithms,

33 of these students were able to answer questions about Raft better than questions about

Paxos. We believe this is the first scientific study to evaluate consensus algorithms based on

teaching and learning.

• The design, implementation, and evaluation of Raft’s leader election mechanism. While many

consensus algorithms do not prescribe a particular leader election algorithm, Raft includes a

specific algorithm involving randomized timers. This adds only a small amount of mechanism

to the heartbeats already required for any consensus algorithm, while resolving conflicts sim-

ply and rapidly. The evaluation of leader election investigates its behavior and performance,

concluding that this simple approach is sufficient in a wide variety of practical environments.

It typically elects a leader in under 20 times the cluster’s one-way network latency.

CHAPTER 1. INTRODUCTION 4

• The design and implementation of Raft’s cluster membership change mechanism. Raft allows

adding or removing a single server at a time; these operations preserve safety simply, since at

least one server overlaps any majority during the change. More complex changes in member-

ship are implemented as a series of single-server changes. Raft allows the cluster to continue

operating normally during changes, and membership changes can be implemented with only

a few extensions to the basic consensus algorithm.

• A thorough discussion and implementation of the other components necessary for a complete

consensus-based system, including client interaction and log compaction. Although we do not

believe these aspects of Raft to be particularly novel, a complete description is important for

understandability and to enable others to build real systems. We have implemented a complete

consensus-based service to explore and address all of the design decisions involved.

• A proof of safety and formal specification for the Raft algorithm. The level of precision in

the formal specification aids in reasoning carefully about the algorithm and clarifying details

in the algorithm’s informal description. The proof of safety helps build confidence in Raft’s

correctness. It also aids others who wish to extend Raft by clarifying the implications for

safety of their extensions.

We have implemented many of the designs in this dissertation in an open-source implementation

of Raft called LogCabin [86]. LogCabin served as our test platform for new ideas in Raft and as

a way to verify that we understood the issues of building a complete and practical system. The

implementation is described in more detail in Chapter 10.

The remainder of this dissertation introduces the replicated state machine problem and dis-

cusses the strengths and weaknesses of Paxos (Chapter 2); presents the Raft consensus algorithm,

its extensions for cluster membership changes and log compaction, and how clients interact with

Raft (Chapters 3–6); evaluates Raft for understandability, correctness, and leader election and log

replication performance (Chapters 7–10); and discusses related work (Chapter 11).

Chapter 2

Motivation

Consensus is a fundamental problem in fault-tolerant systems: how can servers reach agreement

on shared state, even in the face of failures? This problem arises in a wide variety of systems that

need to provide high levels of availability and cannot compromise on consistency; thus, consensus

is used in virtually all consistent large-scale storage systems. Section 2.1 describes how consensus

is typically used to create replicated state machines, a general-purpose building block for fault-

tolerant systems; Section 2.2 discusses various ways replicated state machines are used in larger

systems; and Section 2.3 discusses the problems with the Paxos consensus protocol, which Raft

aims to address.

2.1 Achieving fault tolerance with replicated state machines

Consensus algorithms typically arise in the context of replicated state machines [102]. In this ap-

proach, state machines on a collection of servers compute identical copies of the same state and can

continue operating even if some of the servers are down. Replicated state machines are used to solve

a variety of fault tolerance problems in distributed systems, as described in Section 2.2. Examples of

replicated state machines include Chubby [11] and ZooKeeper [38], which both provide hierarchical

key-value stores for small amounts of configuration data. In addition to basic operations such as get

and put, they also provide synchronization primitives like compare-and-swap, enabling concurrent

clients to coordinate safely.

Replicated state machines are typically implemented using a replicated log, as shown in Fig-

ure 2.1. Each server stores a log containing a series of commands, which its state machine executes

in order. Each log contains the same commands in the same order, so each state machine processes

5

CHAPTER 2. MOTIVATION 6

Figure 2.1: Replicated state machine architecture. The consensus algorithm manages a repli-
cated log containing state machine commands from clients. The state machines process identi-
cal sequences of commands from the logs, so they produce the same outputs.

the same sequence of commands. Since the state machines are deterministic, each computes the

same state and the same sequence of outputs.

Keeping the replicated log consistent is the job of the consensus algorithm. The consensus mod-

ule on a server receives commands from clients and adds them to its log. It communicates with the

consensus modules on other servers to ensure that every log eventually contains the same requests

in the same order, even if some servers fail. Once commands are properly replicated, they are said

to be committed. Each server’s state machine processes committed commands in log order, and the

outputs are returned to clients. As a result, the servers appear to form a single, highly reliable state

machine.

Consensus algorithms for practical systems typically have the following properties:

• They ensure safety (never returning an incorrect result) under all non-Byzantine conditions,

including network delays, partitions, and packet loss, duplication, and reordering.

• They are fully functional (available) as long as any majority of the servers are operational

and can communicate with each other and with clients. Thus, a typical cluster of five servers

can tolerate the failure of any two servers. Servers are assumed to fail by stopping; they may

later recover from state on stable storage and rejoin the cluster.

• They do not depend on timing to ensure the consistency of the logs: faulty clocks and extreme

message delays can, at worst, cause availability problems. That is, they maintain safety under

an asynchronous model [71], in which messages and processors proceed at arbitrary speeds.

CHAPTER 2. MOTIVATION 7

(a) The nodes in the cluster coordinate among
themselves by reading from and writing to the
replicated state machine.

(b) One leader actively manages the nodes in the
cluster and records its state using the replicated
state machine. Other standby servers are passive
until the leader fails.

Figure 2.2: Common patterns for using a single replicated state machine.

• In the common case, a command can complete as soon as a majority of the cluster has re-

sponded to a single round of remote procedure calls; a minority of slow servers need not

impact overall system performance.

2.2 Common use cases for replicated state machines

Replicated state machines are a general-purpose building block for making systems fault-tolerant.

They can be used in a variety of ways, and this section discusses some typical usage patterns.

Most common deployments of consensus have just three or five servers forming one replicated

state machine. Other servers can then use this state machine to coordinate their activities, as shown

in Figure 2.2(a). These systems often use the replicated state machine to provide group membership,

configuration management, or locks [38]. As a more specific example, the replicated state machine

could provide a fault-tolerant work queue, and other servers could coordinate using the replicated

state machine to assign work to themselves.

A common simplification to this usage is shown in Figure 2.2(b). In this pattern, one server acts

as leader, managing the rest of the servers. The leader stores its critical data in the consensus system.

In case it fails, other standby servers compete for the position of leader, and if they succeed, they

use the data in the consensus system to continue operations. Many large-scale storage systems that

have a single cluster leader, such as GFS [30], HDFS [105], and RAMCloud [90], use this approach.

Consensus is also sometimes used to replicate very large amounts of data, as shown in Fig-

ure 2.3. Large storage systems, such as Megastore [5], Spanner [20], and Scatter [32], store too

CHAPTER 2. MOTIVATION 8

Figure 2.3: Partitioned large-scale storage system using consensus. For scale, data is parti-
tioned across many replicated state machines. Operations that span partitions use a two-phase
commit protocol.

much data to fit in a single group of servers. They partition their data across many replicated state

machines, and operations that span multiple partitions use a two-phase commit protocol (2PC) to

maintain consistency.

2.3 What’s wrong with Paxos?

Over the last ten years, Leslie Lamport’s Paxos protocol [48] has become almost synonymous with

consensus: it is the protocol most commonly taught in courses, and most implementations of con-

sensus use it as a starting point. Paxos first defines a protocol capable of reaching agreement on a

single decision, such as a single replicated log entry. We refer to this subset as single-decree Paxos.

Paxos then combines multiple instances of this protocol to facilitate a series of decisions such as

a log (Multi-Paxos). Single-decree Paxos is summarized in Figure 2.4, and Multi-Paxos is summa-

rized in Figure A.5. Paxos ensures safety and liveness (it eventually reaches consensus, assuming

an adequate failure detector is used to avoid proposer livelock), and its correctness has been proven.

Multi-Paxos is efficient in the normal case, and Paxos supports changes in cluster membership [69].

Unfortunately, Paxos has two significant drawbacks. The first drawback is that Paxos is excep-

tionally difficult to understand. The full explanation [48] is notoriously opaque; few people succeed

in understanding it, and only with great effort. As a result, there have been several attempts to ex-

plain Paxos in simpler terms [49, 60, 61]. These explanations focus on the single-decree subset, yet

they are still challenging. In an informal survey of attendees at NSDI 2012, we found few people

who were comfortable with Paxos, even among seasoned researchers. We struggled with Paxos our-

selves; we were not able to understand the complete protocol until after reading several explanations

and designing our own alternative protocol, a process that took almost a year.

CHAPTER 2. MOTIVATION 9

���������	

�������� �����������	
��

����� ����������� ��������������������������� ���

������� �����������	����
������������

�������������� ���������������

������������������ ���������� ���������	���

�������
������������

����
��	 �����

�����������
����������	

����������� ���������������������	
����������������������������

������� ��������� ������������������� �����������������������

���������� ���������������

��������������

���������	

�������� �����������	
��

����
��	

�����	�
�������� ��	
������������� ������������������
��

��������������������

�����	�
����� ���������������� ��������� ���������
�������

��������

�����������
����������	

����������� ���������������������	
����������������������������

������� ��������� ������������������� ����������������������� ���

������������

���������������

�� ������ �����������������	
�������������� ��������!����

�����������

"� ��������������������� �������������

#� ����	�$������������������ ��������� ������������ ��������� ���

���������������������	�������������	
���

%� ����	�$������������������ ��������� ������������������������

�������������		������

���������

�������� ������������������� ��������� ��	�����������

���������

Figure 2.4: Summary of the single-decree Paxos consensus protocol. See [49] for a detailed
explanation.

We hypothesize that Paxos’ opaqueness stems from its choice of the single-decree subset as its

foundation. Single-decree Paxos is dense and subtle: it is divided into two stages that do not have

simple intuitive explanations and cannot be understood independently. Because of this, it is difficult

to develop intuitions about why the single-decree protocol works. The composition rules for Multi-

Paxos add significant additional complexity and subtlety. We believe that the overall problem of

reaching consensus on multiple decisions (i.e., a log instead of a single entry) can be decomposed

in other ways that are more direct and obvious.

The second problem with Paxos is that it does not provide a good foundation for building prac-

tical implementations. One reason is that there is no widely agreed-upon algorithm for Multi-Paxos.

Lamport’s descriptions are mostly about single-decree Paxos; he sketched possible approaches to

Multi-Paxos, but many details are missing. There have been several attempts to flesh out and op-

timize Paxos, such as [77], [108], and [46], but these differ from each other and from Lamport’s

sketches. Systems such as Chubby [15] have implemented Paxos-like algorithms, but in most cases

their details have not been published.

Furthermore, the Paxos architecture is a poor one for building practical systems; this is another

consequence of the single-decree decomposition. For example, there is little benefit to choosing a

collection of log entries independently and then melding them into a sequential log; this just adds

complexity. It is simpler and more efficient to design a system around a log, where new entries are

CHAPTER 2. MOTIVATION 10

appended sequentially in a constrained order. Another problem is that Paxos uses a symmetric peer-

to-peer approach at its core (though it also suggests a weak form of leadership as a performance

optimization). This makes sense in a simplified world where only one decision will be made, but

few practical systems use this approach. If a series of decisions must be made, it is simpler and

faster to first elect a leader, then have the leader coordinate the decisions. (Chapter 11 discusses

Egalitarian Paxos, a recent variant of Paxos that does not use a leader but in some situations can be

more efficient than algorithms that do; however, this algorithm is much more complex than leader-

based algorithms.)

As a result, practical systems bear little resemblance to Paxos. Each implementation begins

with Paxos, discovers the difficulties in implementing it, and then develops a significantly different

architecture. This is time-consuming and error-prone, and the difficulties of understanding Paxos

exacerbate the problem. Paxos’ formulation may be a good one for proving theorems about its

correctness, but real implementations are so different from Paxos that the proofs have little value.

The following comment from the Chubby implementers is typical:

There are significant gaps between the description of the Paxos algorithm and

the needs of a real-world system. . . . the final system will be based on an un-

proven protocol [15].

Because of these problems, we concluded that Paxos does not provide a good foundation either

for system building or for education. Given the importance of consensus in large-scale software sys-

tems, we decided to see if we could design an alternative consensus algorithm with better properties

than Paxos. Raft is the result of that experiment.

Chapter 3

Basic Raft algorithm

This chapter presents the Raft algorithm. We designed Raft to be as understandable as possible;

the first section describes our approach to designing for understandability. The following sections

describe the algorithm itself and include examples of design choices we made for understandability.

3.1 Designing for understandability

We had several goals in designing Raft: it must provide a complete and practical foundation for

system building, so that it significantly reduces the amount of design work required of developers;

it must be safe under all conditions and available under typical operating conditions; and it must be

efficient for common operations. But our most important goal—and most difficult challenge—was

understandability. It must be possible for a large audience to understand the algorithm comfortably.

In addition, it must be possible to develop intuitions about the algorithm, so that system builders

can make the extensions that are inevitable in real-world implementations.

There were numerous points in the design of Raft where we had to choose among alternative

approaches. In these situations we evaluated the alternatives based on understandability: how hard

is it to explain each alternative (for example, how complex is its state space, and does it have subtle

implications?), and how easy will it be for a reader to completely understand the approach and its

implications?

We recognize that there is a high degree of subjectivity in such analysis; nonetheless, we used

two techniques that are generally applicable. The first technique is the well-known approach of

problem decomposition: wherever possible, we divided problems into separate pieces that could

be solved, explained, and understood relatively independently. For example, in Raft we separated

11

CHAPTER 3. BASIC RAFT ALGORITHM 12

leader election, log replication, and safety.

Our second approach was to simplify the state space by reducing the number of states to con-

sider, making the system more coherent and eliminating nondeterminism where possible. Specif-

ically, logs are not allowed to have holes, and Raft limits the ways in which logs can become

inconsistent with each other. Although in most cases we tried to eliminate nondeterminism, there

are some situations where nondeterminism actually improves understandability. In particular, ran-

domized approaches introduce nondeterminism, but they tend to reduce the state space by handling

all possible choices in a similar fashion (“choose any; it doesn’t matter”). We used randomization

to simplify the Raft leader election algorithm.

3.2 Raft overview

Raft is an algorithm for managing a replicated log of the form described in Section 2.1. Figure 3.1

summarizes the algorithm in condensed form for reference, and Figure 3.2 lists key properties of

the algorithm; the elements of these figures are discussed piecewise over the rest of this chapter.

Raft implements consensus by first electing a server as leader, then giving the leader complete

responsibility for managing the replicated log. The leader accepts log entries from clients, replicates

them on other servers, and tells servers when it is safe to apply log entries to their state machines.

Having a leader simplifies the management of the replicated log. For example, the leader can decide

where to place new entries in the log without consulting other servers, and data flows in a simple

fashion from the leader to other servers. A leader can fail or become disconnected from the other

servers, in which case a new leader is elected.

Given the leader approach, Raft decomposes the consensus problem into three relatively inde-

pendent subproblems, which are discussed in the subsections that follow:

• Leader election: a new leader must be chosen when starting the cluster and when an existing

leader fails (Section 3.4).

• Log replication: the leader must accept log entries from clients and replicate them across the

cluster, forcing the other logs to agree with its own (Section 3.5).

• Safety: the key safety property for Raft is the State Machine Safety Property in Figure 3.2:

if any server has applied a particular log entry to its state machine, then no other server may

apply a different command for the same log index. Section 3.6 describes how Raft ensures this

CHAPTER 3. BASIC RAFT ALGORITHM 13

���������	�
��������� ������������ �������

���������	

����
���������� ���

���������	�
������������������ ���

�����	���� ���������
���������� �����������	��������

��������� �������
���������� �����������	��������

����
��	

����
����� ���!�����
�������� ���"���������

���������� ����������
�������� ��
���������

�����������
����������	

�� #�"�	��������������$�
����� ��� ������

%� �������&�� �����������
���������!� ����
���������� ���������

���������"'�'���� �����
�������� ���!���������������!������

����������� ���

���������	������������"��
��� ����������� ����(�)��������������

���������������

���������	

���� ������������

�����	� ��������*���
���������
�
�����

������	���� ����������������	����������	� "��
������

��*�����

���������� �������"���+������� ���	

��������� ����������� ����������"	� �����������)�

��	���������������������������
���
	�

���������� ���������
���������

����
��	

����
����� ���!���������������"���������

������� ������������*���
�������� ���	���
�����

"���+������� ����"���+�� ���

�����������
����������	

�� #�"�	��������������$�
����� ��� �������

%� #�"�	���������������������
������������	���"���+�������

*����� ������
����"���+�� ��� ����(�

�� �������������� ���	�
�����
��*�������*�����������������

������������ �����!������� ����������� ���	������������

�����*� ������(�

�� ,""���� ��	���*�����������������	����������

(� ���������-���� .�
���������!� ���
��������� /�

����������-����!� ���������������*����	�

����������������

����������� ����������

�������	

�0"�������������������������������"������� ��#1-��

����������� ���������������������������������2��� ��3�

�����������!���
��������������
���	�

������
��������� �����
������ �������
������

���������������������

��� ����������)� ��
�����	�
�������
�������

����������
����!� ��������*�������	�

*�����
�������	�������������������������

��
���
������������

�������	

�����	���� ���������������� �������	����*�������

������� ��������2��� ��3!���
�������

�������
���	�

������
��� ���������������� �������	��""�����������

��
����� ��������2��� ��3!���
�������

�������
���	�

��
���
�����������
������	

�#��������2��� ��������
����

����	������ ������
��������!������������������������	�

������� ��������������������2��� ���������

��������������4���

�����	������ ������
��������!����������������� �������	�

���*���������"��
��������������

��������2��� ��3!���
��������������
���	�

�����

�

�������	

� ���
��������� .����,""����5� ��
������ ���,""����!� �""�	�

���6���,""����7� ��������
����� ����(��

� ���#1-��������������"�����
������� ���� �.�
����� ���5

���
����� ��� /� !�
������ �������*��� ������

��

������ ������	

� #��"���� ��#1-�������
��������� �����������

� ������
���� ���������"����*����� ��
�������,""���8�����

#1-������
������������������������������
�������5�

������ ��
�������

����������� ������	

� ���
���������� ��
�������!��������
���5

� ��
������
����� ���

� 9�����������

� #�������
���� ����

� :����#�����9�� #1-��������������������

� �������� ��
������ �������;���	�����������5� ��
���� ������

� ���,""���8����� #1-���
������ �������*�������5�
������ ��

�����*��

� ������
���� ���������"���5� ������*����
���

�������	

� 0"������
���5� ��������������"	�,""���8����� #1-�

��������������
��������)���"���������������"������� ��

"������ ���
���� ������� ������

� ���
������� ��
������ �����
����5� �""�������	�����
������!�

���"���� ��������	��""�������������
����� ����(�

� �����������������<��������� �����������*��5� �����

,""���8������ #1-�*�������������� ������������������

� �����

������5� �"������������ ������
������ ����

�����*��� ����(��

� ���,""���8����� ��������
��������������
�������
	5�

��
������ �������� �������	�����(��

� �������������� ���=���
�����=�.�
���������!� ����;���	�

�����
������6�7� < =!��������6=7�����//�
����� ���5

���
��������� /�=�����(!�������

��
�������������

Figure 3.1: A condensed summary of the Raft consensus algorithm (excluding membership
changes, log compaction, and client interaction). The server behavior in the lower-right box is
described as a set of rules that trigger independently and repeatedly. Section numbers such as
§3.4 indicate where particular features are discussed. The formal specification in Appendix B
describes the algorithm more precisely.

CHAPTER 3. BASIC RAFT ALGORITHM 14

Election Safety
At most one leader can be elected in a given term. §3.4

Leader Append-Only
A leader never overwrites or deletes entries in its log; it only appends new entries. §3.5

Log Matching
If two logs contain an entry with the same index and term, then the logs are identical
in all entries up through the given index. §3.5

Leader Completeness
If a log entry is committed in a given term, then that entry will be present in the logs
of the leaders for all higher-numbered terms. §3.6

State Machine Safety
If a server has applied a log entry at a given index to its state machine, no other server
will ever apply a different log entry for the same index. §3.6.3

Figure 3.2: Raft guarantees that each of these properties is true at all times. The section num-
bers indicate where each property is discussed.

property; the solution involves an additional restriction on the election mechanism described

in Section 3.4.

After presenting the consensus algorithm, this chapter discusses the issue of availability and the

role of timing in the system (Section 3.9), and an optional extension to transfer leadership between

servers (Section 3.10).

3.3 Raft basics

A Raft cluster contains several servers; five is a typical number, which allows the system to tolerate

two failures. At any given time each server is in one of three states: leader, follower, or candidate.

In normal operation there is exactly one leader and all of the other servers are followers. Followers

are passive: they issue no requests on their own but simply respond to requests from leaders and can-

didates. The leader handles all client requests (if a client contacts a follower, the follower redirects

it to the leader). The third state, candidate, is used to elect a new leader as described in Section 3.4.

Figure 3.3 shows the states and their transitions; the transitions are discussed below.

Raft divides time into terms of arbitrary length, as shown in Figure 3.4. Terms are numbered

with consecutive integers. Each term begins with an election, in which one or more candidates

attempt to become leader as described in Section 3.4. If a candidate wins the election, then it serves

as leader for the rest of the term. In some situations an election will result in a split vote. In this case

CHAPTER 3. BASIC RAFT ALGORITHM 15

Figure 3.3: Server states. Followers only respond to requests from other servers. If a follower
receives no communication, it becomes a candidate and initiates an election. A candidate that
receives votes from a majority of the full cluster becomes the new leader. Leaders typically
operate until they fail.

Figure 3.4: Time is divided into terms, and each term begins with an election. After a successful
election, a single leader manages the cluster until the end of the term. Some elections fail, in
which case the term ends without choosing a leader. The transitions between terms may be
observed at different times on different servers.

the term will end with no leader; a new term (with a new election) will begin shortly. Raft ensures

that there is at most one leader in a given term.

Different servers may observe the transitions between terms at different times, and in some situ-

ations a server may not observe an election or even entire terms. Terms act as a logical clock [47] in

Raft, and they allow servers to detect obsolete information such as stale leaders. Each server stores a

current term number, which increases monotonically over time. Current terms are exchanged when-

ever servers communicate; if one server’s current term is smaller than the other’s, then it updates

its current term to the larger value. If a candidate or leader discovers that its term is out of date,

it immediately reverts to follower state. If a server receives a request with a stale term number, it

rejects the request.

CHAPTER 3. BASIC RAFT ALGORITHM 16

Raft servers communicate using remote procedure calls (RPCs), and the basic consensus algo-

rithm requires only two types of RPCs between servers. RequestVote RPCs are initiated by candi-

dates during elections (Section 3.4), and AppendEntries RPCs are initiated by leaders to replicate

log entries and to provide a form of heartbeat (Section 3.5). Leadership transfer (Section 3.10) and

the mechanisms described in subsequent chapters introduce additional RPCs beyond the two in the

core consensus algorithm.

We chose to structure communication in Raft as RPCs to simplify its communication patterns.

Each request type has a corresponding response type, which also serves as the request’s acknowl-

edgment. Raft assumes RPC requests and responses may be lost in the network; it is the requester’s

responsibility to retry the RPC if it does not receive a response in a timely manner. Servers issue

RPCs in parallel for best performance, and Raft does not assume the network preserves ordering

between RPCs.

3.4 Leader election

Raft uses a heartbeat mechanism to trigger leader election. When servers start up, they begin as

followers. A server remains in follower state as long as it receives valid RPCs from a leader or

candidate. Leaders send periodic heartbeats (AppendEntries RPCs that carry no log entries) to all

followers in order to maintain their authority. If a follower receives no communication over a period

of time called the election timeout, then it assumes there is no viable leader and begins an election

to choose a new leader.

To begin an election, a follower increments its current term and transitions to candidate state.

It then votes for itself and issues RequestVote RPCs in parallel to each of the other servers in the

cluster. A candidate continues in this state until one of three things happens: (a) it wins the election,

(b) another server establishes itself as leader, or (c) another election timeout goes by with no winner.

These outcomes are discussed separately in the paragraphs below.

A candidate wins an election if it receives votes from a majority of the servers in the full cluster

for the same term. Each server will vote for at most one candidate in a given term, on a first-

come-first-served basis (note: Section 3.6 adds an additional restriction on votes). The majority rule

ensures that at most one candidate can win the election for a particular term (the Election Safety

Property in Figure 3.2). Once a candidate wins an election, it becomes leader. It then sends heartbeat

messages to all of the other servers to establish its authority and prevent new elections.

While waiting for votes, a candidate may receive an AppendEntries RPC from another server

CHAPTER 3. BASIC RAFT ALGORITHM 17

claiming to be leader. If the leader’s term (included in its RPC) is at least as large as the candidate’s

current term, then the candidate recognizes the leader as legitimate and returns to follower state. If

the term in the RPC is smaller than the candidate’s current term, then the candidate rejects the RPC

and continues in candidate state.

The third possible outcome is that a candidate neither wins nor loses the election: if many

followers become candidates at the same time, votes could be split so that no candidate obtains a

majority. When this happens, each candidate will time out and start a new election by incrementing

its term and initiating another round of RequestVote RPCs. However, without extra measures split

votes could repeat indefinitely.

Raft uses randomized election timeouts to ensure that split votes are rare and that they are

resolved quickly. To prevent split votes in the first place, election timeouts are chosen randomly

from a fixed interval (e.g., 150–300 ms). This spreads out the servers so that in most cases only

a single server will time out; it wins the election and sends heartbeats before any other servers

time out. The same mechanism is used to handle split votes. Each candidate restarts its randomized

election timeout at the start of an election, and it waits for that timeout to elapse before starting the

next election; this reduces the likelihood of another split vote in the new election. Chapter 9 shows

that this approach elects a leader rapidly.

Elections are an example of how understandability guided our choice between design alter-

natives. Initially we planned to use a ranking system: each candidate was assigned a unique rank,

which was used to select between competing candidates. If a candidate discovered another candidate

with higher rank, it would return to follower state so that the higher ranking candidate could more

easily win the next election. We found that this approach created subtle issues around availability (a

lower-ranked server might need to time out and become a candidate again if a higher-ranked server

fails, but if it does so too soon, it can reset progress towards electing a leader). We made adjustments

to the algorithm several times, but after each adjustment new corner cases appeared. Eventually we

concluded that the randomized retry approach is more obvious and understandable.

3.5 Log replication

Once a leader has been elected, it begins servicing client requests. Each client request contains a

command to be executed by the replicated state machine. The leader appends the command to its log

as a new entry, then issues AppendEntries RPCs in parallel to each of the other servers to replicate

the entry. When the entry has been safely replicated (as described below), the leader applies the

CHAPTER 3. BASIC RAFT ALGORITHM 18

Figure 3.5: Logs are composed of entries, which are numbered sequentially. Each entry con-
tains the term in which it was created (the number in each box) and a command for the state
machine. An entry is considered committed if it is safe for that entry to be applied to state
machines.

entry to its state machine and returns the result of that execution to the client. If followers crash or

run slowly, or if network packets are lost, the leader retries AppendEntries RPCs indefinitely (even

after it has responded to the client) until all followers eventually store all log entries.

Logs are organized as shown in Figure 3.5. Each log entry stores a state machine command along

with the term number when the entry was received by the leader. The term numbers in log entries

are used to detect inconsistencies between logs and to ensure some of the properties in Figure 3.2.

Each log entry also has an integer index identifying its position in the log.

The leader decides when it is safe to apply a log entry to the state machines; such an entry is

called committed. Raft guarantees that committed entries are durable and will eventually be exe-

cuted by all of the available state machines. A log entry is committed once the leader that created

the entry has replicated it on a majority of the servers (e.g., entry 7 in Figure 3.5). This also commits

all preceding entries in the leader’s log, including entries created by previous leaders. Section 3.6

discusses some subtleties when applying this rule after leader changes, and it also shows that this

definition of commitment is safe. The leader keeps track of the highest index it knows to be com-

mitted, and it includes that index in future AppendEntries RPCs (including heartbeats) so that the

other servers eventually find out. Once a follower learns that a log entry is committed, it applies the

entry to its local state machine (in log order).

CHAPTER 3. BASIC RAFT ALGORITHM 19

We designed the Raft log mechanism to maintain a high level of coherency between the logs on

different servers. Not only does this simplify the system’s behavior and make it more predictable,

but it is an important component of ensuring safety. Raft maintains the following properties, which

together constitute the Log Matching Property in Figure 3.2:

• If two entries in different logs have the same index and term, then they store the same com-

mand.

• If two entries in different logs have the same index and term, then the logs are identical in all

preceding entries.

The first property follows from the fact that a leader creates at most one entry with a given log

index in a given term, and log entries never change their position in the log. The second property is

guaranteed by a consistency check performed by AppendEntries. When sending an AppendEntries

RPC, the leader includes the index and term of the entry in its log that immediately precedes the

new entries. If the follower does not find an entry in its log with the same index and term, then it

refuses the new entries. The consistency check acts as an induction step: the initial empty state of

the logs satisfies the Log Matching Property, and the consistency check preserves the Log Matching

Property whenever logs are extended. As a result, whenever AppendEntries returns successfully, the

leader knows that the follower’s log is identical to its own log up through the new entries.

During normal operation, the logs of the leader and followers stay consistent, so the Append-

Entries consistency check never fails. However, leader crashes can leave the logs inconsistent (the

old leader may not have fully replicated all of the entries in its log). These inconsistencies can

compound over a series of leader and follower crashes. Figure 3.6 illustrates the ways in which

followers’ logs may differ from that of a new leader. A follower may be missing entries that are

present on the leader, it may have extra entries that are not present on the leader, or both. Missing

and extraneous entries in a log may span multiple terms.

In Raft, the leader handles inconsistencies by forcing the followers’ logs to duplicate its own.

This means that conflicting entries in follower logs will be overwritten with entries from the leader’s

log. Section 3.6 will show that this is safe when coupled with a restriction on elections.

To bring a follower’s log into consistency with its own, the leader must find the latest log entry

where the two logs agree, delete any entries in the follower’s log after that point, and send the

follower all of the leader’s entries after that point. All of these actions happen in response to the

consistency check performed by AppendEntries RPCs. The leader maintains a nextIndex for each

follower, which is the index of the next log entry the leader will send to that follower. When a

leader first comes to power, it initializes all nextIndex values to the index just after the last one in

CHAPTER 3. BASIC RAFT ALGORITHM 20

Figure 3.6: When the leader at the top comes to power, it is possible that any of scenarios (a–f)
could occur in follower logs. Each box represents one log entry; the number in the box is its
term. A follower may be missing entries (a–b), may have extra uncommitted entries (c–d), or
both (e–f). For example, scenario (f) could occur if that server was the leader for term 2, added
several entries to its log, then crashed before committing any of them; it restarted quickly,
became leader for term 3, and added a few more entries to its log; before any of the entries
in either term 2 or term 3 were committed, the server crashed again and remained down for
several terms.

CHAPTER 3. BASIC RAFT ALGORITHM 21

its log (11 in Figure 3.6). If a follower’s log is inconsistent with the leader’s, the AppendEntries

consistency check will fail in the next AppendEntries RPC. After a rejection, the leader decrements

the follower’s nextIndex and retries the AppendEntries RPC. Eventually the nextIndex will reach a

point where the leader and follower logs match. When this happens, AppendEntries will succeed,

which removes any conflicting entries in the follower’s log and appends entries from the leader’s

log (if any). Once AppendEntries succeeds, the follower’s log is consistent with the leader’s, and it

will remain that way for the rest of the term.

Until the leader has discovered where it and the follower’s logs match, the leader can send

AppendEntries with no entries (like heartbeats) to save bandwidth. Then, once the matchIndex im-

mediately precedes the nextIndex, the leader should begin to send the actual entries.

If desired, the protocol can be optimized to reduce the number of rejected AppendEntries RPCs.

For example, when rejecting an AppendEntries request, the follower can include the term of the

conflicting entry and the first index it stores for that term. With this information, the leader can

decrement nextIndex to bypass all of the conflicting entries in that term; one AppendEntries RPC

will be required for each term with conflicting entries, rather than one RPC per entry. Alternatively,

the leader can use a binary search approach to find the first entry where the follower’s log differs

from its own; this has better worst-case behavior. In practice, we doubt these optimizations are

necessary, since failures happen infrequently and it is unlikely that there will be many inconsistent

entries.

With this mechanism, a leader does not need to take any special actions to restore log consistency

when it comes to power. It just begins normal operation, and the logs automatically converge in

response to failures of the AppendEntries consistency check. A leader never overwrites or deletes

entries in its own log (the Leader Append-Only Property in Figure 3.2).

This log replication mechanism exhibits the desirable consensus properties described in Sec-

tion 2.1: Raft can accept, replicate, and apply new log entries as long as a majority of the servers are

up; in the normal case a new entry can be replicated with a single round of RPCs to a majority of

the cluster; and a single slow follower will not impact performance. The log replication algorithm

is also practical to implement, since AppendEntries requests are manageable in size (leaders never

need to send more than one entry in a single AppendEntries request to make progress). Some other

consensus algorithms are described as sending entire logs over the network; this places a burden on

the implementer to develop optimizations required for a practical implementation.

CHAPTER 3. BASIC RAFT ALGORITHM 22

3.6 Safety

The previous sections described how Raft elects leaders and replicates log entries. However, the

mechanisms described so far are not quite sufficient to ensure that each state machine executes

exactly the same commands in the same order. For example, a follower might be unavailable while

the leader commits several log entries, then it could be elected leader and overwrite these entries

with new ones; as a result, different state machines might execute different command sequences.

This section completes the Raft algorithm by adding a restriction on which servers may be

elected leader. The restriction ensures that the leader for any given term contains all of the entries

committed in previous terms (the Leader Completeness Property from Figure 3.2). Given the elec-

tion restriction, we then make the rules for commitment more precise. Finally, we present a proof

sketch for the Leader Completeness Property and show how it leads to correct behavior of the repli-

cated state machine.

3.6.1 Election restriction

In any leader-based consensus algorithm, the leader must eventually store all of the committed

log entries. In some consensus algorithms, such as Viewstamped Replication [66], a leader can be

elected even if it doesn’t initially contain all of the committed entries. These algorithms contain

additional mechanisms to identify the missing entries and transmit them to the new leader, either

during the election process or shortly afterwards. Unfortunately, this results in considerable addi-

tional mechanism and complexity. Raft uses a simpler approach where it guarantees that all the

committed entries from previous terms are present on each new leader from the moment of its elec-

tion, without the need to transfer those entries to the leader. This means that log entries only flow in

one direction, from leaders to followers, and leaders never overwrite existing entries in their logs.

Raft uses the voting process to prevent a candidate from winning an election unless its log con-

tains all committed entries. A candidate must contact a majority of the cluster in order to be elected,

which means that every committed entry must be present in at least one of those servers. If the can-

didate’s log is at least as up-to-date as any other log in that majority (where “up-to-date” is defined

precisely below), then it will hold all the committed entries. The RequestVote RPC implements this

restriction: the RPC includes information about the candidate’s log, and the voter denies its vote if

its own log is more up-to-date than that of the candidate.

Raft determines which of two logs is more up-to-date by comparing the index and term of the

last entries in the logs. If the logs have last entries with different terms, then the log with the later

CHAPTER 3. BASIC RAFT ALGORITHM 23

Figure 3.7: A time sequence showing why a leader cannot determine commitment using log
entries from older terms. In (a) S1 is leader and partially replicates the log entry at index 2. In
(b) S1 crashes; S5 is elected leader for term 3 with votes from S3, S4, and itself, and accepts
a different entry at log index 2. In (c) S5 crashes; S1 restarts, is elected leader, and continues
replication. At this point, the log entry from term 2 has been replicated on a majority of the
servers, but it is not committed. If S1 crashes as in (d1), S5 could be elected leader (with votes
from S2, S3, and S4) and overwrite the entry with its own entry from term 3. However, if S1
replicates an entry from its current term on a majority of the servers before crashing, as in (d2),
then this entry is committed (S5 cannot win an election). At this point all preceding entries in
the log are committed as well.

CHAPTER 3. BASIC RAFT ALGORITHM 24

term is more up-to-date. If the logs end with the same term, then whichever log is longer is more

up-to-date.

3.6.2 Committing entries from previous terms

As described in Section 3.5, a leader knows that an entry from its current term is committed once

that entry is stored on a majority of the servers. If a leader crashes before committing an entry,

future leaders will attempt to finish replicating the entry. However, a leader cannot immediately

conclude that an entry from a previous term is committed once it is stored on a majority of servers.

Figure 3.7 illustrates a situation where an old log entry is stored on a majority of servers, yet can

still be overwritten by a future leader.

To eliminate problems like the one in Figure 3.7, Raft never commits log entries from previ-

ous terms by counting replicas. Only log entries from the leader’s current term are committed by

counting replicas; once an entry from the current term has been committed in this way, then all prior

entries are committed indirectly because of the Log Matching Property. There are some situations

where a leader could safely conclude that an older log entry is committed (for example, if that entry

is stored on every server), but Raft takes a more conservative approach for simplicity.

Raft incurs this extra complexity in the commitment rules because log entries retain their orig-

inal term numbers when a leader replicates entries from previous terms. In other consensus algo-

rithms, if a new leader re-replicates entries from prior “terms”, it must do so with its new “term

number”. Raft’s approach makes it easier to reason about log entries, since they maintain the same

term number over time and across logs. In addition, new leaders in Raft send fewer log entries from

previous terms than in other algorithms, since other algorithms must send redundant log entries to

renumber them before they can be committed; however, this may not be very important in practice,

since leader changes should be rare.

3.6.3 Safety argument

Given the complete Raft algorithm, we can now argue more precisely that the Leader Completeness

Property holds (this argument is based on the safety proof; see Chapter 8). We assume that the

Leader Completeness Property does not hold, then we prove a contradiction. Suppose the leader for

term T (leaderT) commits a log entry from its term, but that log entry is not stored by the leader of

some future term. Consider the smallest term U > T whose leader (leaderU) does not store the entry.

1. The committed entry must have been absent from leaderU’s log at the time of its election

CHAPTER 3. BASIC RAFT ALGORITHM 25

Figure 3.8: If S1 (leader for term T) commits a new log entry from its term, and S5 is elected
leader for a later term U, then there must be at least one server (S3) that accepted the log entry
and also voted for S5.

(leaders never delete or overwrite entries).

2. leaderT replicated the entry on a majority of the cluster, and leaderU received votes from a

majority of the cluster. Thus, at least one server (“the voter”) both accepted the entry from

leaderT and voted for leaderU, as shown in Figure 3.8. The voter is key to reaching a contra-

diction.

3. The voter must have accepted the committed entry from leaderT before voting for leaderU;

otherwise it would have rejected the AppendEntries request from leaderT (its current term

would have been higher than T).

4. The voter still stored the entry when it voted for leaderU, since every intervening leader con-

tained the entry (by assumption), leaders never remove entries, and followers only remove

entries if they conflict with the leader.

5. The voter granted its vote to leaderU, so leaderU’s log must have been as up-to-date as the

voter’s. This leads to one of two contradictions.

6. First, if the voter and leaderU shared the same last log term, then leaderU’s log must have

been at least as long as the voter’s, so its log contained every entry in the voter’s log. This is a

contradiction, since the voter contained the committed entry and leaderU was assumed not to.

7. Otherwise, leaderU’s last log term must have been larger than the voter’s. Moreover, it was

larger than T, since the voter’s last log term was at least T (it contains the committed entry

from term T). The earlier leader that created leaderU’s last log entry must have contained the

CHAPTER 3. BASIC RAFT ALGORITHM 26

committed entry in its log (by assumption). Then, by the Log Matching Property, leaderU’s

log must also contain the committed entry, which is a contradiction.

8. This completes the contradiction. Thus, the leaders of all terms greater than T must contain

all entries from term T that are committed in term T.

9. The Log Matching Property guarantees that future leaders will also contain entries that are

committed indirectly, such as index 2 in Figure 3.7(d2).

Given the Leader Completeness Property, we can prove the State Machine Safety Property from

Figure 3.2, which states that if a server has applied a log entry at a given index to its state machine,

no other server will ever apply a different log entry for the same index. At the time a server applies a

log entry to its state machine, its log must be identical to the leader’s log up through that entry, and

the entry must be committed. Now consider the lowest term in which any server applies a given log

index; the Leader Completeness Property guarantees that the leaders for all higher terms will store

that same log entry, so servers that apply the index in later terms will apply the same value. Thus,

the State Machine Safety Property holds.

Finally, Raft requires servers to apply entries in log index order. Combined with the State Ma-

chine Safety Property, this means that all servers will apply exactly the same set of log entries to

their state machines, in the same order.

3.7 Follower and candidate crashes

Until this point we have focused on leader failures. Follower and candidate crashes are much sim-

pler to handle than leader crashes, and they are both handled in the same way. If a follower or

candidate crashes (or the network link between it and the leader fails), then future RequestVote and

AppendEntries RPCs sent to it will fail. Raft handles these failures by retrying indefinitely; if the

crashed server restarts, then the RPC will complete successfully. If a server crashes after completing

an RPC but before responding, then it will receive the same RPC again after it restarts. Raft RPCs

have the same effect if repeated, so this causes no harm. For example, if a follower receives an

AppendEntries request that includes log entries already present in its log, it ignores those entries in

the new request.

CHAPTER 3. BASIC RAFT ALGORITHM 27

3.8 Persisted state and server restarts

Raft servers must persist enough information to stable storage to survive server restarts safely. In

particular, each server persists its current term and vote; this is necessary to prevent the server from

voting twice in the same term or replacing log entries from a newer leader with those from a deposed

leader. Each server also persists new log entries before they are counted towards the entries’ com-

mitment; this prevents committed entries from being lost or “uncommitted” when servers restart.

Other state variables are safe to lose on a restart, as they can all be recreated. The most interesting

example is the commit index, which can safely be reinitialized to zero on a restart. Even if every

server restarts at the same time, the commit index will only temporarily lag behind its true value.

Once a leader is elected and is able to commit a new entry, its commit index will advance, and it

will quickly propagate this commit index to its followers.

The state machine can either be volatile or persistent. A volatile state machine must be recovered

after restarts by reapplying log entries (after applying the latest snapshot; see Chapter 5). A persis-

tent state machine, however, has already applied most entries after a restart; to avoid reapplying

them, its last applied index must also be persistent.

If a server loses any of its persistent state, it cannot safely rejoin the cluster with its prior identity.

Such a server can usually be added back into the cluster with a new identity by invoking a cluster

membership change (see Chapter 4). If a majority of the cluster loses its persistent state, however,

log entries may be lost and progress on cluster membership changes will not be possible; to proceed,

a system administrator would need to admit the possibility of data loss.

3.9 Timing and availability

One of our requirements for Raft is that safety must not depend on timing: the system must not

produce incorrect results just because some event happens more quickly or slowly than expected.

However, availability (the ability of the system to respond to clients in a timely manner) must

inevitably depend on timing. For example, if message exchanges take longer than the typical time

between server crashes, candidates will not stay up long enough to win an election; without a steady

leader, Raft cannot make progress.

Leader election is the aspect of Raft where timing is most critical. Raft will be able to elect and

maintain a steady leader when the system satisfies the following timing requirement:

broadcastTime� electionTimeout�MTBF

CHAPTER 3. BASIC RAFT ALGORITHM 28

In this inequality broadcastTime is the average time it takes a server to send RPCs in parallel to every

server in the cluster and receive their responses; electionTimeout is the election timeout described

in Section 3.4; and MTBF is the mean (average) time between failures for a single server. The

broadcast time should be an order of magnitude less than the election timeout so that leaders can

reliably send the heartbeat messages required to keep followers from starting elections; given the

randomized approach used for election timeouts, this inequality also makes split votes unlikely. The

election timeout should be a few orders of magnitude less than MTBF so that the system makes

steady progress. When the leader crashes, the system will be unavailable for roughly the election

timeout; we would like this to represent only a small fraction of overall time.

The broadcast time and MTBF are properties of the underlying system, while the election time-

out is something we must choose. Raft’s RPCs typically require the recipient to persist information

to stable storage, so the broadcast time may range from 0.5–20 ms, depending on storage technol-

ogy. As a result, the election timeout is likely to be somewhere between 10–500 ms. Typical server

MTBFs are several months or more, which easily satisfies the timing requirement. Chapter 9 ex-

plores how to set the election timeout and its impact on availability and leader election performance

in more detail.

3.10 Leadership transfer extension

This section describes an optional extension to Raft that allows one server to transfer its leadership

to another. Leadership transfer could be useful in two types of situations:

1. Sometimes the leader must step down. For example, it may need to reboot for maintenance,

or it may be removed from the cluster (see Chapter 4). When it steps down, the cluster will

be idle for an election timeout until another server times out and wins an election. This brief

unavailability can be avoided by having the leader transfer its leadership to another server

before it steps down.

2. In some cases, one or more servers may be more suitable to lead the cluster than others. For

example, a server with high load would not make a good leader, or in a WAN deployment,

servers in a primary datacenter may be preferred in order to minimize the latency between

clients and the leader. Other consensus algorithms may be able to accommodate these pref-

erences during leader election, but Raft needs a server with a sufficiently up-to-date log to

CHAPTER 3. BASIC RAFT ALGORITHM 29

become leader, which might not be the most preferred one. Instead, a leader in Raft can pe-

riodically check to see whether one of its available followers would be more suitable, and if

so, transfer its leadership to that server. (If only human leaders were so graceful.)

To transfer leadership in Raft, the prior leader sends its log entries to the target server, then the

target server runs an election without waiting for an election timeout to elapse. The prior leader

thus ensures that the target server has all committed entries at the start of its term, and, as in normal

elections, the majority voting guarantees the safety properties (such as the Leader Completeness

Property) are maintained. The following steps describe the process in more detail:

1. The prior leader stops accepting new client requests.

2. The prior leader fully updates the target server’s log to match its own, using the normal log

replication mechanism described in Section 3.5.

3. The prior leader sends a TimeoutNow request to the target server. This request has the same

effect as the target server’s election timer firing: the target server starts a new election (incre-

menting its term and becoming a candidate).

Once the target server receives the TimeoutNow request, it is highly likely to start an election before

any other server and become leader in the next term. Its next message to the prior leader will include

its new term number, causing the prior leader to step down. At this point, leadership transfer is

complete.

It is also possible for the target server to fail; in this case, the cluster must resume client opera-

tions. If leadership transfer does not complete after about an election timeout, the prior leader aborts

the transfer and resumes accepting client requests. If the prior leader was mistaken and the target

server is actually operational, then at worst this mistake will result in an extra election, after which

client operations will be restored.

This approach preserves safety by operating within the normal transitions of a Raft cluster. For

example, Raft already guarantees safety even when clocks run at arbitrary speeds; when the target

server receives a TimeoutNow request, it is equivalent to the target server’s clock jumping forwards

quickly, which is safe. However, we have not currently implemented or evaluated this leadership

transfer approach.

CHAPTER 3. BASIC RAFT ALGORITHM 30

3.11 Conclusion

This chapter addressed all the core problems for a consensus-based system. Raft goes beyond reach-

ing consensus on a single value, as in single-decree Paxos; it achieves consensus on a growing log of

commands, which is needed to build a replicated state machine. It also includes disseminates infor-

mation once agreement has been reached, so that other servers learn the log entries that have been

committed. Raft achieves consensus in a practical and efficient way by electing a cluster leader

to unilaterally make decisions and transmitting only the necessary log entries when a new leader

comes to power. We have implemented the ideas of Raft in LogCabin, a replicated state machine

(described in Chapter 10).

Raft uses only a small amount of mechanism to address the full consensus problem. For ex-

ample, it uses only two RPCs (RequestVote and AppendEntries). Perhaps surprisingly, creating a

compact algorithm/implementation was not an explicit goal for Raft. Rather, it is a result of our

design for understandability, where every bit of mechanism must be fully motivated and explained.

We found that redundant or meandering mechanism is hard to motivate, so it naturally gets purged

in the design process.

Unless we felt confident that a particular problem would affect a large fraction of Raft deploy-

ments, we did not address it in Raft. As a result, parts of Raft may appear naı̈ve. For example,

servers in Raft detect a split vote by waiting for an election timeout; in principle, they could often

detect and even resolve split votes sooner by counting the votes granted to any candidate. We chose

not to develop this optimization for Raft, since it adds complexity but probably brings no practi-

cal benefit: split votes are rare in a well-configured deployment. Other parts of Raft may appear

overly conservative. For example, a leader only directly commits an entry from its current term,

even though in some special cases it could safely commit entries from prior terms. Applying a more

complex commitment rule would harm understandability and would not have a significant effect

on performance; commitment is only delayed briefly with the current rule. In discussing Raft with

others, we found that many people cannot help but think of such optimizations and propose them,

but when the goal is understandability, premature optimizations should be left out.

Inevitably, this chapter might have left out some features or optimizations that turn out to be

useful in practice. As implementers gain more experience with Raft, they will learn when and why

certain additional features may be useful, and they may need to implement these for some practi-

cal deployments. Throughout the chapter, we sketched a few optional extensions that we currently

think are unnecessary but that may help guide implementers should the need arise. By focusing

CHAPTER 3. BASIC RAFT ALGORITHM 31

on understandability, we hope to have provided a solid foundation for implementers to adjust Raft

according to their experiences. Since Raft works in our testing environment, we expect these to be

straightforward extensions rather than fundamental changes.

Chapter 4

Cluster membership changes

Up until now we have assumed that the cluster configuration (the set of servers participating in the

consensus algorithm) is fixed. In practice, it will occasionally be necessary to change the configura-

tion, for example to replace servers when they fail or to change the degree of replication. This could

be done manually, using one of two approaches:

• Configuration changes could be done by taking the entire cluster off-line, updating configu-

ration files, and then restarting the cluster. However, this would leave the cluster unavailable

during the changeover.

• Alternatively, a new server could replace a cluster member by acquiring its network address.

However, the administrator must guarantee that the replaced server will never come back up,

or else the system would lose its safety properties (for example, there would be an extra vote).

Both of these approaches to membership changes have significant downsides, and if there are any

manual steps, they risk operator error.

In order to avoid these issues, we decided to automate configuration changes and incorporate

them into the Raft consensus algorithm. Raft allows the cluster to continue operating normally

during changes, and membership changes can be implemented with only a few extensions to the

basic consensus algorithm. Figure 4.1 summarizes the RPCs used to change cluster membership,

whose elements are described in the remainder of this chapter.

32

CHAPTER 4. CLUSTER MEMBERSHIP CHANGES 33

���������	�
��������������
�����������������������

��������
����

���������	

���������
�������������������������� �����

��������
���

����
��	

������ ��������������
���������������������	

��������	�
������������������
�������������

�����������
����������	

�� ����	��������������������
���������

�� !
������������������������
���� ������������������

��"��

#� ������� ������������
���� ���	��������������������
����

���������$����� �� ������ ���������
%���	��������

��������
���� ��"��

"� ����	����
�������������������
����������� ���������

��"����

���������� ���

���������	�
�������
���
����������������������������
����

���������	

	�
������
�������������������
�������������
���

����
��	

������ ��������������
��
����������������	

��������	�
������������������
�������������

�����������
����������	

�� ����	��������������������
���������

�� &
�����������������������'�������������������������	�

��(�����������������������������
������������ ����
��

�������� ����������������
��������
������������
�����

�������� ���������"����

#� !
������������������������
���� ������������������ �

��"��

"� ������� ������������
���� ���	��������������������
����

��������$����� �� ������ ���������
%���	��������

��������
���� ��"��

)� ����	���

�������� ���

Figure 4.1: RPCs used to change cluster membership. The AddServer RPC is used to add a
new server to the current configuration, and the RemoveServer RPC is used to remove a server
from the current configuration. Section numbers such as §4.1 indicate where particular features
are discussed. Section 4.4 discusses ways to use these RPCs in a complete system.

4.1 Safety

Preserving safety is the first challenge for configuration changes. For the mechanism to be safe, there

must be no point during the transition where it is possible for two leaders to be elected for the same

term. If a single configuration change adds or removes many servers, switching the cluster directly

from the old configuration to the new configuration can be unsafe; it isn’t possible to atomically

switch all of the servers at once, so the cluster can potentially split into two independent majorities

during the transition (see Figure 4.2).

Most membership change algorithms introduce additional mechanism to deal with such prob-

lems. This is what we did for Raft initially, but we later discovered a simpler approach, which is to

disallow membership changes that could result in disjoint majorities. Thus, Raft restricts the types

of changes that are allowed: only one server can be added or removed from the cluster at a time.

More complex changes in membership are implemented as a series of single-server changes. Most

of this chapter describes the single-server approach, which is easier to understand than our original

approach. For completeness, Section 4.3 describes the original approach, which incurs additional

complexity to handle arbitrary configuration changes. We implemented the more complex approach

in LogCabin prior to discovering the simpler single-server change approach; it still uses the more

CHAPTER 4. CLUSTER MEMBERSHIP CHANGES 34

Figure 4.2: Switching directly from one configuration to another can be unsafe because differ-
ent servers will switch at different times. In this example, the cluster grows from three servers
to five. Unfortunately, there is a point in time where two different leaders can be elected for the
same term, one with a majority of the old configuration (Cold) and another with a majority of
the new configuration (Cnew).

(a) Adding one server to a 4-server cluster. (b) Adding one server to a 3-server cluster.

(c) Removing one server from a 5-server cluster. (d) Removing one server from a 4-server cluster.

Figure 4.3: The addition and removal of a single server from an even- and an odd-sized cluster.
In each figure, the blue rectangle shows a majority of the old cluster, and the red rectangle
shows a majority of the new cluster. In every single-server membership change, an overlap
between any majority of the old cluster and any majority of the new cluster is preserved, as
needed for safety. For example in (b), a majority of the old cluster must include two of the left
three servers, and a majority of the new cluster must include three of the servers in the new
cluster, of which at least two must come from the old cluster.

CHAPTER 4. CLUSTER MEMBERSHIP CHANGES 35

complex approach at the time of this writing.

When adding a single server to a cluster or removing a single server from a cluster, any ma-

jority of the old cluster overlaps with any majority of the new cluster; see Figure 4.3. This overlap

prevents the cluster from splitting into two independent majorities; in terms of the safety argument

of Section 3.6.3, it guarantees the existence of “the voter”. Thus, when adding or removing just a

single server, it is safe to switch directly to the new configuration. Raft exploits this property to

change cluster membership safely using little additional mechanism.

Cluster configurations are stored and communicated using special entries in the replicated log.

This leverages the existing mechanisms in Raft to replicate and persist configuration information.

It also allows the cluster to continue to service client requests while configuration changes are in

progress, by imposing ordering between configuration changes and client requests (while allowing

both to be replicated concurrently in a pipeline and/or in batches).

When the leader receives a request to add or remove a server from its current configuration

(Cold), it appends the new configuration (Cnew) as an entry in its log and replicates that entry using

the normal Raft mechanism. The new configuration takes effect on each server as soon as it is added

to that server’s log: the Cnew entry is replicated to the Cnew servers, and a majority of the new

configuration is used to determine the Cnew entry’s commitment. This means that servers do not

wait for configuration entries to be committed, and each server always uses the latest configuration

found in its log.

The configuration change is complete once the Cnew entry is committed. At this point, the leader

knows that a majority of the Cnew servers have adopted Cnew. It also knows that any servers that have

not moved to Cnew can no longer form a majority of the cluster, and servers without Cnew cannot be

elected leader. Commitment of Cnew allows three things to continue:

1. The leader can acknowledge the successful completion of the configuration change.

2. If the configuration change removed a server, that server can be shut down.

3. Further configuration changes can be started. Before this point, overlapped configuration

changes could degrade to unsafe situations like the one in Figure 4.2.

As stated above, servers always use the latest configuration in their logs, regardless of whether

that configuration entry has been committed. This allows leaders to easily avoid overlapping config-

uration changes (the third item above), by not beginning a new change until the previous change’s

entry has committed. It is only safe to start another membership change once a majority of the old

CHAPTER 4. CLUSTER MEMBERSHIP CHANGES 36

cluster has moved to operating under the rules of Cnew. If servers adopted Cnew only when they

learned that Cnew was committed, Raft leaders would have a difficult time knowing when a major-

ity of the old cluster had adopted it. They would need to track which servers know of the entry’s

commitment, and the servers would need to persist their commit index to disk; neither of these

mechanisms is required in Raft. Instead, each server adopts Cnew as soon as that entry exists in its

log, and the leader knows it’s safe to allow further configuration changes as soon as the Cnew entry

has been committed. Unfortunately, this decision does imply that a log entry for a configuration

change can be removed (if leadership changes); in this case, a server must be prepared to fall back

to the previous configuration in its log.

In Raft, it is the caller’s configuration that is used in reaching consensus, both for voting and for

log replication:

• A server accepts AppendEntries requests from a leader that is not part of the server’s latest

configuration. Otherwise, a new server could never be added to the cluster (it would never

accept any log entries preceding the configuration entry that adds the server).

• A server also grants its vote to a candidate that is not part of the server’s latest configuration (if

the candidate has a sufficiently up-to-date log and a current term). This vote may occasionally

be needed to keep the cluster available. For example, consider adding a fourth server to a

three-server cluster. If one server were to fail, the new server’s vote would be needed to form

a majority and elect a leader.

Thus, servers process incoming RPC requests without consulting their current configurations.

4.2 Availability

Cluster membership changes introduce several issues in preserving the cluster’s availability. Sec-

tion 4.2.1 discusses catching up new servers before they’re added to the cluster, so that they do not

stall commitment of new log entries; Section 4.2.2 addresses how to phase out an existing leader

if it is removed from the cluster; and Section 4.2.3 describes how to prevent removed servers from

disrupting the leader of the new cluster. Finally, Section 4.2.4 closes with an argument for why the

resulting membership change algorithm is sufficient to preserve availability during any membership

change.

CHAPTER 4. CLUSTER MEMBERSHIP CHANGES 37

(a) Failure of S3 while adding S4. (b) Adding S3–S6 in quick succession.

Figure 4.4: Examples of how adding servers with empty logs can put availability at risk. The
figures show the servers’ logs in two different clusters. Each cluster starts out with three servers,
S1–S3. In (a), S4 is added, then S3 fails. The cluster should be able to operate normally after
one failure, but it loses availability: it needs three of the four servers to commit a new entry,
but S3 has failed and S4’s log is too far behind to append new entries. In (b), S4–S6 are added
in quick succession. Committing the configuration entry that adds S6 (the third new server)
requires four servers’ logs to store that entry, but S4–S6 have logs that are far behind. Neither
cluster will be available until the new servers’ logs are caught up.

4.2.1 Catching up new servers

When a server is added to the cluster, it typically will not store any log entries. If it is added to the

cluster in this state, its log could take quite a while to catch up to the leader’s, and during this time,

the cluster is more vulnerable to unavailability. For example, a three-server cluster can normally

tolerate one failure with no loss in availability. However, if a fourth server with an empty log is

added to the same cluster and one of the original three servers fails, the cluster will be temporarily

unable to commit new entries (see Figure 4.4(a)). Another availability issue can occur if many new

servers are added to a cluster in quick succession, where the new servers are needed to form a

majority of the cluster (see Figure 4.4(b)). In both cases, until the new servers’ logs were caught up

to the leader’s, the clusters would be unavailable.

In order to avoid availability gaps, Raft introduces an additional phase before the configuration

change, in which a new server joins the cluster as a non-voting member. The leader replicates

log entries to it, but it is not yet counted towards majorities for voting or commitment purposes.

Once the new server has caught up with the rest of the cluster, the reconfiguration can proceed as

described above. (The mechanism to support non-voting servers can also be useful in other contexts;

CHAPTER 4. CLUSTER MEMBERSHIP CHANGES 38

(a) Start of round 2. (b) End of round 2.

Figure 4.5: To catch up a new server, the replication of entries to the new server is split into
rounds. Each round completes once the new server has all of the entries that the leader had in
its log at the start of the round. By then, however, the leader may have received new entries;
these are replicated in the next round.

for example, it can be used to replicate the state to a large number of servers, which can serve read-

only requests with relaxed consistency.)

The leader needs to determine when a new server is sufficiently caught up to continue with

the configuration change. This requires some care to preserve availability: if the server is added

too soon, the cluster’s availability may be at risk, as described above. Our goal was to keep any

temporary unavailability below an election timeout, since clients must already be able to tolerate

occasional unavailability periods of that magnitude (in case of leader failures). Moreover, if possible,

we wanted to minimize unavailability further by bringing the new server’s log even closer to the

leader’s.

The leader should also abort the change if the new server is unavailable or is so slow that it will

never catch up. This check is important: Lamport’s ancient Paxon government broke down because

they did not include it. They accidentally changed the membership to consist of only drowned

sailors and could make no more progress [48]. Attempting to add a server that is unavailable or

slow is often a mistake. In fact, our very first configuration change request included a typo in a

network port number; the system correctly aborted the change and returned an error.

We suggest the following algorithm to determine when a new server is sufficiently caught up

to add to the cluster. The replication of entries to the new server is split into rounds, as shown in

Figure 4.5. Each round replicates all the log entries present in the leader’s log at the start of the

round to the new server’s log. While it is replicating entries for its current round, new entries may

arrive at the leader; it will replicate these during the next round. As progress is made, the round

durations shrink in time. The algorithm waits a fixed number of rounds (such as 10). If the last

round lasts less than an election timeout, then the leader adds the new server to the cluster, under

the assumption that there are not enough unreplicated entries to create a significant availability gap.

CHAPTER 4. CLUSTER MEMBERSHIP CHANGES 39

Otherwise, the leader aborts the configuration change with an error. The caller may always try again

(it will be more likely to succeed the next time, since the new server’s log will already be partially

caught up).

As the first step to catching up a new server, the leader must discover that the new server’s log

is empty. With a new server, the consistency check in AppendEntries will fail repeatedly until the

leader’s nextIndex finally drops to one. This back-and-forth might be the dominant factor in the

performance of adding a new server to the cluster (after this phase, log entries can be transmitted to

the follower with fewer RPCs by using batching). Various approaches can make nextIndex converge

to its correct value more quickly, including those described in Chapter 3. The simplest approach

to solving this particular problem of adding a new server, however, is to have followers return the

length of their logs in the AppendEntries response; this allows the leader to cap the follower’s

nextIndex accordingly.

4.2.2 Removing the current leader

If the existing leader is asked to remove itself from the cluster, it must step down at some point. One

straightforward approach is to use the leadership transfer extension described in Chapter 3: a leader

that is asked to remove itself would transfer its leadership to another server, which would then carry

out the membership change normally.

We initially developed a different approach for Raft, in which the existing leader carries out

the membership change to remove itself, then it steps down. This puts Raft in a somewhat awkward

mode of operation while the leader temporarily manages a configuration in which it is not a member.

We initially needed this approach for arbitrary configuration changes (see Section 4.3), where the old

configuration and the new configuration might not have any servers in common to which leadership

could be transferred. The same approach is also viable for systems that do not implement leadership

transfer.

In this approach, a leader that is removed from the configuration steps down once the Cnew entry

is committed. If the leader stepped down before this point, it might still time out and become leader

again, delaying progress. In an extreme case of removing the leader from a two-server cluster, the

server might even have to become leader again for the cluster to make progress; see Figure 4.6.

Thus, the leader waits until Cnew is committed to step down. This is the first point when the new

configuration can definitely operate without participation from the removed leader: it will always be

possible for the members of Cnew to elect a new leader from among themselves. After the removed

leader steps down, a server in Cnew will time out and win an election. This small availability gap

CHAPTER 4. CLUSTER MEMBERSHIP CHANGES 40

Figure 4.6: Until the Cnew entry has been committed, a removed server may need to lead the
cluster to make progress. The figure shows the removal of S1 from a two-server cluster. S1
is currently leader. S1 should not step down quite yet; it is still needed as leader. S2 cannot
become leader until it receives the Cnew entry from S1 (since S2 still needs S1’s vote to form a
majority of Cold, and S1 won’t grant its vote to S2 because S2’s log is less up-to-date).

should be tolerable, since similar availability gaps arise when leaders fail.

This approach leads to two implications about decision-making that are not particularly harmful

but may be surprising. First, there will be a period of time (while it is committing Cnew) when a

leader can manage a cluster that does not include itself; it replicates log entries but does not count

itself in majorities. Second, a server that is not part of its own latest configuration should still start

new elections, as it might still be needed until the Cnew entry is committed (as in Figure 4.6). It does

not count its own vote in elections unless it is part of its latest configuration.

4.2.3 Disruptive servers

Without additional mechanism, servers not in Cnew can disrupt the cluster. Once the cluster leader

has created the Cnew entry, a server that is not in Cnew will no longer receive heartbeats, so it will

time out and start new elections. Furthermore, it will not receive the Cnew entry or learn of that

entry’s commitment, so it will not know that it has been removed from the cluster. The server will

send RequestVote RPCs with new term numbers, and this will cause the current leader to revert to

follower state. A new leader from Cnew will eventually be elected, but the disruptive server will time

out again and the process will repeat, resulting in poor availability. If multiple servers have been

removed from the cluster, the situation could degrade further.

Our first idea for eliminating disruptions was that, if a server is going to start an election, it

would first check that it wouldn’t be wasting everyone’s time—that it had a chance to win the

election. This introduced a new phase to elections, called the Pre-Vote phase. A candidate would

first ask other servers whether its log was up-to-date enough to get their vote. Only if the candidate

CHAPTER 4. CLUSTER MEMBERSHIP CHANGES 41

Figure 4.7: An example of how a server can be disruptive even before the Cnew log entry has
been committed, and the Pre-Vote phase doesn’t help. The figure shows the removal of S1 from
a four-server cluster. S4 is leader of the new cluster and has created the Cnew entry in its log, but
it hasn’t yet replicated that entry. Servers in the old cluster no longer receive heartbeats from
S4. Even before Cnew is committed, S1 can time out, increment its term, and send this larger
term number to the new cluster, forcing S4 to step down. The Pre-Vote algorithm does not help,
since S1’s log is as up-to-date as a majority of either cluster.

believed it could get votes from a majority of the cluster would it increment its term and start a

normal election.

Unfortunately, the Pre-Vote phase does not solve the problem of disruptive servers: there are

situations where the disruptive server’s log is sufficiently up-to-date, but starting an election would

still be disruptive. Perhaps surprisingly, these can happen even before the configuration change

completes. For example, Figure 4.7 shows a server that is being removed from a cluster. Once the

leader creates the Cnew log entry, the server being removed could be disruptive. The Pre-Vote check

does not help in this case, since the server being removed has a log that is more up-to-date than

a majority of either cluster. (Though the Pre-Vote phase does not solve the problem of disruptive

servers, it does turn out to be a useful idea for improving the robustness of leader election in general;

see Chapter 9.)

Because of this scenario, we now believe that no solution based on comparing logs alone (such

as the Pre-Vote check) will be sufficient to tell if an election will be disruptive. We cannot require a

server to check the logs of every server in Cnew before starting an election, since Raft must always be

able to tolerate faults. We also did not want to assume that a leader will reliably replicate entries fast

enough to move past the scenario shown in Figure 4.7 quickly; that might have worked in practice,

but it depends on stronger assumptions that we prefer to avoid about the performance of finding

CHAPTER 4. CLUSTER MEMBERSHIP CHANGES 42

where logs diverge and the performance of replicating log entries.

Raft’s solution uses heartbeats to determine when a valid leader exists. In Raft, a leader is

considered active if it is able to maintain heartbeats to its followers (otherwise, another server will

start an election). Thus, servers should not be able to disrupt a leader whose cluster is receiving

heartbeats. We modify the RequestVote RPC to achieve this: if a server receives a RequestVote

request within the minimum election timeout of hearing from a current leader, it does not update its

term or grant its vote. It can either drop the request, reply with a vote denial, or delay the request;

the result is essentially the same. This does not affect normal elections, where each server waits at

least a minimum election timeout before starting an election. However, it helps avoid disruptions

from servers not in Cnew: while a leader is able to get heartbeats to its cluster, it will not be deposed

by larger term numbers.

This change conflicts with the leadership transfer mechanism as described in Chapter 3, in which

a server legitimately starts an election without waiting an election timeout. In that case, RequestVote

messages should be processed by other servers even when they believe a current cluster leader exists.

Those RequestVote requests can include a special flag to indicate this behavior (“I have permission

to disrupt the leader—it told me to!”).

4.2.4 Availability argument

This section argues that the above solutions are sufficient to maintain availability during membership

changes. Since Raft’s membership changes are leader-based, we show that the algorithm will be able

to maintain and replace leaders during membership changes and that the leader(s) will both service

client requests and complete the configuration changes. We assume, among other things, that a

majority of the old configuration is available (at least until Cnew is committed) and that a majority

of the new configuration is available.

1. A leader can be elected at all steps of the configuration change:

• If the available server with the most up-to-date log in the new cluster has the Cnew entry,

it can collect votes from a majority of Cnew and become leader.

• Otherwise, the Cnew entry must not yet be committed. The available server with the most

up-to-date log among both the old and new clusters can collect votes from a majority

of Cold and a majority of Cnew, so no matter which configuration it uses, it can become

leader.

CHAPTER 4. CLUSTER MEMBERSHIP CHANGES 43

2. A leader is maintained once elected, assuming its heartbeats get through to its configuration,

unless it intentionally steps down because it is not in Cnew but has committed Cnew.

• If a leader can reliably send heartbeats to its own configuration, then neither it nor its

followers will adopt a higher term: they will not time out to start any new elections, and

they will ignore any RequestVote messages with a higher term from other servers. Thus,

the leader will not be forced to step down.

• If a server that is not in Cnew commits the Cnew entry and steps down, Raft will then

elect a new leader. It is likely that this new leader will be part of Cnew, allowing the

configuration change to complete. However, there is some (small) risk that the server

that stepped down might become leader again. If it was elected again, it would confirm

the commitment of the Cnew entry and soon step down, and it is again likely that a server

in Cnew would succeed the next time.

3. The leader(s) will service client requests throughout the configuration change.

• Leaders can continue to append client requests to their logs throughout the change.

• Since new servers are caught up before being added to the cluster, a leader can advance

its commit index and reply to clients in a timely manner.

4. The leader(s) will progress towards and complete the configuration change by committing

Cnew, and, if necessary, stepping down to allow a server in Cnew to become leader.

Therefore, under the above assumptions, the mechanisms described in this section are sufficient to

preserve availability during any membership change.

4.3 Arbitrary configuration changes using joint consensus

This section presents a more complex approach to cluster membership changes that handles arbitrary

changes to the configuration at one time. For example, two servers can be added to a cluster at once,

or all of the servers in a five-server cluster can be replaced at once. This was the first approach to

membership changes that we came up with, and it is described only for completeness. Now that

we know about the simpler single-server approach, we recommend that one instead, since handling

arbitrary changes requires extra complexity. Arbitrary changes are typically the way membership

changes are assumed to operate in the literature, but we don’t think this flexibility is needed in real

CHAPTER 4. CLUSTER MEMBERSHIP CHANGES 44

Figure 4.8: Timeline for a configuration change using joint consensus. Dashed lines show
configuration entries that have been created but not committed, and solid lines show the latest
committed configuration entry. The leader first creates the Cold,new configuration entry in its log
and commits it to Cold,new (a majority of Cold and a majority of Cnew). Then it creates the Cnew
entry and commits it to a majority of Cnew. There is no point in time in which Cold and Cnew
can both make decisions independently.

systems, where a series of single-server changes can change the cluster membership to any desired

configuration.

To ensure safety across arbitrary configuration changes, the cluster first switches to a transitional

configuration we call joint consensus; once the joint consensus has been committed, the system then

transitions to the new configuration. The joint consensus combines both the old and new configura-

tions:

• Log entries are replicated to all servers in both configurations.

• Any server from either configuration may serve as leader.

• Agreement (for elections and entry commitment) requires separate majorities from both the

old and new configurations. For example, when changing from a cluster of 3 servers to a dif-

ferent cluster of 9 servers, agreement requires both 2 of the 3 servers in the old configuration

and 5 of the 9 servers in the new configuration.

The joint consensus allows individual servers to transition between configurations at different times

without compromising safety. Furthermore, joint consensus allows the cluster to continue servicing

client requests throughout the configuration change.

This approach extends the single-server membership change algorithm with an intermediate

log entry for the joint configuration; Figure 4.8 illustrates the process. When the leader receives a

CHAPTER 4. CLUSTER MEMBERSHIP CHANGES 45

request to change the configuration from Cold to Cnew, it stores the configuration for joint consensus

(Cold,new in the figure) as a log entry and replicates that entry using the normal Raft mechanism. As

with the single-server configuration change algorithm, each server starts using a new configuration

as soon as it stores the configuration in its log. This means that the leader will use the rules of

Cold,new to determine when the log entry for Cold,new is committed. If the leader crashes, a new

leader may be chosen under either Cold or Cold,new, depending on whether the winning candidate

has received Cold,new. In any case, Cnew cannot make unilateral decisions during this period.

Once Cold,new has been committed, neither Cold nor Cnew can make decisions without approval

of the other, and the Leader Completeness Property ensures that only servers with the Cold,new log

entry can be elected as leader. It is now safe for the leader to create a log entry describing Cnew and

replicate it to the cluster. Again, this configuration will take effect on each server as soon as it is

seen. When the Cnew log entry has been committed under the rules of Cnew, the old configuration is

irrelevant and servers not in the new configuration can be shut down. As shown in Figure 4.8, there

is no time when Cold and Cnew can both make unilateral decisions; this guarantees safety.

The joint consensus approach could be generalized to allow a configuration change to begin

while a prior change was still in progress. However, there would not be much practical advantage to

doing this. Instead, a leader rejects additional configuration changes when a configuration change

is already in progress (when its latest configuration is not committed or is not a simple majority).

Changes that are rejected in this way can simply wait and try again later.

This joint consensus approach is more complex than the single-server changes precisely because

it requires transitioning to and from an intermediate configuration. Joint configurations also require

changes to how all voting and commitment decisions are made; instead of simply counting servers,

the leader must check if the servers form a majority of the old cluster and also form a majority of

the new cluster. Implementing this required finding and changing about six comparisons in our Raft

implementation [86].

4.4 System integration

Raft implementations may expose the cluster membership change mechanism described in this

chapter in different ways. For example, the AddServer and RemoveServer RPCs in Figure 4.1 can

be invoked by administrators directly, or they can be invoked by a script that uses a series of single-

server steps to change the configuration in arbitrary ways.

It may be desirable to invoke membership changes automatically in response to events like

CHAPTER 4. CLUSTER MEMBERSHIP CHANGES 46

server failures. However, this should only be done according to a reasonable policy. For example,

it can be dangerous for the cluster to automatically remove failed servers, as it could then be left

with too few replicas to satisfy the intended durability and fault-tolerance requirements. One rea-

sonable approach is to have the system administrator configure a desired cluster size, and within

that constraint, available servers could automatically replace failed servers.

When making cluster membership changes that require multiple single-server steps, it is prefer-

able to add servers before removing servers. For example, to replace a server in a three-server cluster,

adding one server and then removing the other allows the system to handle one server failure at all

times throughout the process. However, if one server was first removed before the other was added,

the system would temporarily not be able to mask any failures (since two-server clusters require

both servers to be available).

Membership changes motivate a different approach to bootstrapping a cluster. Without dynamic

membership, each server simply has a static file listing the configuration. With dynamic membership

changes, the static configuration file is no longer needed, since the system manages configurations

in the Raft log; it is also potentially error-prone (e.g., with which configuration should a new server

be initialized?). Instead, we recommend that the very first time a cluster is created, one server is

initialized with a configuration entry as the first entry in its log. This configuration lists only that one

server; it alone forms a majority of its configuration, so it can consider this configuration committed.

Other servers from then on should be initialized with empty logs; they are added to the cluster and

learn of the current configuration through the membership change mechanism.

Membership changes also necessitate a dynamic approach for clients to find the cluster; this is

discussed in Chapter 6.

4.5 Conclusion

This chapter described an extension to Raft for handling cluster membership changes automatically.

This is an important part of a complete consensus-based system, since fault-tolerance requirements

can change over time, and failed servers eventually need to be replaced.

The consensus algorithm must fundamentally be involved in preserving safety across configu-

ration changes, since a new configuration affects the meaning of “majority”. This chapter presented

a simple approach that adds or removes a single server at a time. These operations preserve safety

simply, since at least one server overlaps any majority during the change. Multiple single-server

CHAPTER 4. CLUSTER MEMBERSHIP CHANGES 47

changes may be composed to modify the cluster more drastically. Raft allows the cluster to con-

tinue operating normally during membership changes.

Preserving availability during configuration changes requires handling several non-trivial issues.

In particular, the issue of a server not in the new configuration disrupting valid cluster leaders was

surprisingly subtle; we struggled with several insufficient solutions based on log comparisons before

settling on a working solution based on heartbeats.

Chapter 5

Log compaction

Raft’s log grows during normal operation as it incorporates more client requests. As it grows larger,

it occupies more space and takes more time to replay. Without some way to compact the log, this

will eventually cause availability problems: servers will either run out of space, or they will take too

long to start. Thus, some form of log compaction is necessary for any practical system.

The general idea of log compaction is that much of the information in the log becomes obsolete

over time and can be discarded. For example, an operation that sets x to 2 is obsolete if a later

operation sets x to 3. Once log entries have been committed and applied to the state machine, the

intermediate states and operations used to arrive at the current state are no longer needed, and they

can be compacted away.

Unlike the core Raft algorithm and membership changes, different systems will have different

needs when it comes to log compaction. There is no one-size-fits-all solution to log compaction for

a couple of reasons. First, different systems may choose to trade off simplicity and performance to

varying degrees. Second, the state machine must be intimately involved in log compaction, and state

machines differ substantially in size and in whether they are based on disk or volatile memory.

The goal of this chapter is to discuss a variety of approaches to log compaction. In each ap-

proach, most of the responsibility of log compaction falls on the state machine, which is in charge

of writing the state to disk and compacting the state. State machines can achieve this in different

ways, which are described throughout the chapter and summarized in Figure 5.1:

• Snapshotting for memory-based state machines is conceptually the simplest approach. In

snapshotting, the entire current system state is written to a snapshot on stable storage, then

the entire log up to that point is discarded. Snapshotting is used in Chubby [11, 15] and

48

CHAPTER 5. LOG COMPACTION 49

�����������	

����������	�	
��� �������������

����������	

�

������������������	�	
��� �������������

�������������	

�����������
���������������� ����������������
��� ������
�� �����

� !
�������������	������"��	�	
��

� ���������#��
���������
�������� ��$�����

� �������#����������� ���	�	
��� ���������������
���%�

������
�� �����
�����

& '�����������
��� ������
�� �����
�����

('������������
��������
��������"�� ������������ ����

���������������������������������	

�������������
�� �����)�		������*

�������������
��������������

�����������	

+��������
����	�	
��� ����

����������	

� ,�������
������������	�	
��� ����

& ,����������������-������)����	������
������ �������*

(!
��������������
������������
	������
���#������������

������� ���������	������
������ �������

!�����������"�	

��������	�	
��� ����������������.�

� ,������������	�	
��� ��������
���%��
����������-�����
�����

& ���������	�	
��� ����

('������������
��������
���������������� ����

!�������"��	

�������������������������������-�

� ����������������- �����%��������������������#���
��������%�

�
��
����������� ����������������������&��.��
�������

& '������	���� ����

����������
���������
����������������������������� �-� �.�

� ������
���������������)��
���� �
����
���*� %��������

����������� �������/������#���
��������%��
��

����������� �������/����������������&��.��
�������

& '������	����� ����

���������������������������������	

+��������
������)�		������*

#�$�
��"�"�������$������������%

�����������	

� +����� �������
����	�	
��� �������	���

& 0����������%�����
����
��
�����

����������	

� �

������
����
��
�������������

& ������������
	����	����
�����

&�"����������$����	

��������	�	
��� �
�����	���� ��������&��.�

� ���������	�	
��� ���	���� �
����������%��������	���

& ���������	�	
��� ���	���

('������������
��������
���������������� ����

!��������$�����	

���������������������
������
%�12�

� ,�������-����	����� �
�������%����������������������
��

�������

����
	

 � �

 �
� ����������

%��������������������
��
������������� ����������	���

& 3
���������������� ���
���%����	�����

� �

������������������
�����	���� ����������������

� 0����������%������%��
����
��
�����

('������
�����������	����

���������������������������������	

+������	�����
������)�		������*

#�$�!������$�����%

�����������	

� �������
�������������������

& '������������
��������
���������������� ����

����������	

�

���������������
�������������������

���������������������������������	

3
���
��%����� ������
��
��
�������������������

'����������
�������������(

4�������� ���
������������ �
��������� �+��
� �������
	�������

�
���
%� �
��
%���� %���������	������� �����

��������� �����
��������������������)����������� �
�

-�
���������

�*

�������	 ���	�
��������������������)����������� �
�-�

���������

�*

����
���� ���������������	�	�������� �
���������
�� ���

���
������������

�����
���������!��������

�����������	

����������	�	
��� �������������

����������	

�

������������������	�	
��� �������������

�������������	

�����������
���������������� �����������.�

� ,�
������������������� ��$�����

& ����������������������� ����������������
���
�

(,����������������������#��������
���%�������
�� ����������
�

� ����	����
�������� ���������$�����

1 +�������������������������������
�� ����������
		����#� ���

������� ����������
��������������
�����������

���������������������������������	

������
��)�
�����
���� �����*

)����
�����#������������
�������� ����*

Figure 5.1: The figure shows how various approaches to log compaction can be used in Raft.
Details for log-structured merge trees in the figure are based on LevelDB [63], and details for
log cleaning are based on RAMCloud [98]; rules for managing deletions are omitted.

CHAPTER 5. LOG COMPACTION 50

ZooKeeper [38], and we have implemented snapshotting in LogCabin. Snapshotting is the

approach presented in the most depth in this chapter, in Section 5.1.

• With disk-based state machines, a recent copy of the system state is maintained on disk as

part of normal operation. Thus, the Raft log can be discarded as soon as the state machine

reflects writes to disk, and snapshotting is used only when sending consistent disk images to

other servers (Section 5.2).

• Incremental approaches to log compaction, such as log cleaning and log-structured merge

trees, are presented in Section 5.3. These approaches write to disk efficiently, and they utilize

resources evenly over time.

• Finally, Section 5.4 discusses an approach to log compaction that minimizes the mechanism

required by storing snapshots directly in the log. Though easier to implement, this approach

is only suitable for very small state machines.

LogCabin currently only implements the memory-based snapshotting approach (it embeds a memory-

based state machine).

The various approaches to compaction share several core concepts. First, instead of centralizing

compaction decisions on the leader, each server compacts the committed prefix of its log indepen-

dently. This avoids having the leader transmit data to followers that already have the data in their

logs. It also helps modularity: most of the complexity of log compaction is contained within the

state machine and does not interact much with Raft itself. This helps keep overall system complex-

ity to a minimum: the complexity of Raft adds to, rather than multiplies with, the complexity of

log compaction. Alternative approaches that centralize compaction responsibilities on a leader are

discussed further in Section 5.4 (and for very small state machines, a leader-based approach may be

better).

Second, the basic interaction between the state machine and Raft involves transferring respon-

sibility for a prefix of the log from Raft to the state machine. Sooner or later after applying entries,

the state machine reflects those entries to disk in a way that can recover the current system state.

Once it has done so, it tells Raft to discard the corresponding prefix of the log. Before Raft can

give up responsibility for the log prefix, it must save some of its own state describing the log prefix.

Specifically, Raft retains the index and term of the last entry it discarded; this anchors the rest of

the log in place after the state machine’s state and allows the AppendEntries consistency check to

continue to work (it needs the index and term for the entry preceding the first entry in the log).

CHAPTER 5. LOG COMPACTION 51

Raft also retains the latest configuration from the discarded log prefix in order to support cluster

membership changes.

Third, once Raft has discarded a prefix of the log, the state machine takes on two new respon-

sibilities. If the server restarts, the state machine will need to load the state corresponding to the

discarded log entries from disk before it can apply any entries from the Raft log. In addition, the

state machine may need to produce a consistent image of the state so that it can be sent to a slow

follower (one whose log is far behind the leader’s). It is not feasible to defer compaction until log

entries have been “fully replicated” to every member in the cluster, since a minority of slow follow-

ers must not keep the cluster from being fully available, and new servers can be added to the cluster

at any time. Thus, slow followers or new servers will occasionally need to receive their initial states

over the network. Raft detects this when the next entry needed in AppendEntries has already been

discarded in the leader’s log. In this case, the state machine must provide a consistent image of the

state, which the leader then sends to the follower.

5.1 Snapshotting memory-based state machines

The first approach to snapshotting applies when the state machine’s data structures are kept in mem-

ory. This is a reasonable choice for state machines with datasets in the gigabytes or tens of gigabytes.

It enables operations to complete quickly, since they never have to fetch data from disk; it is also

easy to program, since rich data structures can be used and every operation can run to completion

(without blocking for I/O).

Figure 5.2 shows the basic idea of snapshotting in Raft when the state machine is kept in mem-

ory. Each server takes snapshots independently, covering just the committed entries in its log. Most

of the work in snapshotting involves serializing the state machine’s current state, and this is specific

to a particular state machine implementation. For example, LogCabin’s state machine uses a tree as

its primary data structure; it serializes this tree using a pre-order depth-first traversal (so that when

applying the snapshot, parent nodes are created before their children). State machines must also

serialize the information they keep for providing linearizability to clients (see Chapter 6).

Once the state machine completes writing a snapshot, the log can be truncated. Raft first stores

the state it needs for a restart: the index and term of the last entry included in the snapshot and the

latest configuration as of that index. Then it discards the prefix of its log up through that index. Any

previous snapshots can also be discarded, as they are no longer useful.

As introduced above, the leader may occasionally need to send its state to slow followers and

CHAPTER 5. LOG COMPACTION 52

Figure 5.2: A server replaces the committed entries in its log (indexes 1 through 5) with a
new snapshot, which stores just the current state (variables x and y in this example). Before
discarding entries 1 though 5, Raft saves the snapshot’s last included index (5) and term (3) to
position the snapshot in the log preceding entry 6.

to new servers that are joining the cluster. In snapshotting, this state is just the latest snapshot,

which the leader transfers using a new RPC called InstallSnapshot, as shown in Figure 5.3. When a

follower receives a snapshot with this RPC, it must decide what to do with its existing log entries.

Usually the snapshot will contain new information not already in the follower’s log. In this case,

the follower discards its entire log; it is all superseded by the snapshot and may possibly have

uncommitted entries that conflict with the snapshot. If, instead, the follower receives a snapshot that

describes a prefix of its log (due to retransmission or by mistake), then log entries covered by the

snapshot are deleted but entries following the snapshot are still valid and must be retained.

The remainder of this section discusses secondary issues for snapshotting memory-based state

machines:

• Section 5.1.1 discusses how to produce snapshots in parallel with normal operations, to min-

imize their effects on clients;

• Section 5.1.2 discusses when to take a snapshot, balancing the space usage and the overhead

of snapshotting; and

• Section 5.1.3 discusses the issues that arise in implementing snapshotting.

5.1.1 Snapshotting concurrently

Creating a snapshot can take a long time, both in serializing the state and in writing it to disk. For

example, copying 10 GB of memory takes about one second on today’s servers, and serializing it

will usually take much longer: even a solid state disk can only write about 500 MB in one second.

CHAPTER 5. LOG COMPACTION 53

���������	�
��������������������������������� ������

������

���������
��	�����������������������

���������	

����
�����������

�������� �����

����� �������������
����

�����	��
 ����������� ���
������

����������������������

���
������ ���������

�������� �������
�������

�����	���
�����
������������������ ������
������� ����
����

��
	����������������

����� �	��������������������������������� ������

�������� ��
�

������ �����	����������������� ���������������������

�	� �����������������
��������

����
��	

���� ����������������
�����������������
�

�����������
����������	

 � !��
	���������
	� �������"�����������

#� $����������������� ��
����������������������� ���%�

&� '�������������������� ��
���������������

(� !��
	��
��

)� ���
������� ���
����������
��������������� ������������� ��
��

����!��������
���������
��������
��$��������*���������	�

�������� ��������
���������

+� �����������
������	���������������������������
������� ����

����������������
�������������
������� ������������	�

��

������ �������� �������
	

,� *����������������
��

-� !������������������������������ ������� �����
����

��$����� ����
������������������

�����

�����������

Figure 5.3: Leaders invoke the InstallSnapshot RPC to send snapshots to slow followers. Lead-
ers resort to sending a snapshot only when they have already discarded the next log entry needed
to replicate entries to the follower with AppendEntries. They split the snapshot into chunks for
transmission. Among other benefits, this gives the follower a sign of life with each chunk, so it
can reset its election timer. Each chunk is sent in order, which simplifies writing the file to disk.
The RPC includes the state needed for Raft to load the snapshot on a restart: the index and term
of the last entry covered by the snapshot, and the latest configuration at that point.

CHAPTER 5. LOG COMPACTION 54

Thus, both serializing and writing snapshots must be concurrent with normal operations to avoid

availability gaps.

Fortunately, copy-on-write techniques allow new updates to be applied without impacting the

snapshot being written. There are two approaches to this:

• State machines can be built with immutable (functional) data structures to support this. Be-

cause state machine commands would not modify the state in place, a snapshotting task could

keep a reference to some prior state and write it consistently into a snapshot.

• Alternatively, the operating system’s copy-on-write support can be used (where the program-

ming environment allows it). On Linux for example, in-memory state machines can use fork

to make a copy of the server’s entire address space. Then, the child process can write out the

state machine’s state and exit, all while the parent process continues servicing requests. The

LogCabin implementation currently uses this approach.

Servers require additional memory for snapshotting concurrently, which should be planned for

and managed. It is essential for state machines to have a streaming interface to the snapshot file, so

that the snapshot does not have to be staged entirely in memory while it is created. Still, copy-on-

write requires extra memory proportional to the fraction of the state machine state that is changed

during the snapshotting process. Moreover, relying on the operating system for copy-on-write will

typically use even more memory due to false sharing (for example, if two unrelated data items

happen to be on the same page of memory, the second item will be duplicated even when only the

first has changed). In the unfortunate event that memory capacity is exhausted during snapshotting,

a server should stop accepting new log entries until it completes its snapshot; this would temporarily

sacrifice the server’s availability (the cluster might still remain available), but at least it would allow

the server to recover. It is better not to abort the snapshot and retry later, since the next attempts

might also face the same problem. (LogCabin uses a streaming interface to disk, but it does not

currently handle memory exhaustion gracefully.)

5.1.2 When to snapshot

Servers must decide when to snapshot. If a server snapshots too often, it wastes disk bandwidth

and other resources; if it snapshots too infrequently, it risks exhausting its storage capacity, and it

increases the time required to replay the log during restarts.

One simple strategy is to take a snapshot when the log reaches a fixed size in bytes. If this

size is set to be significantly larger than the expected size of a snapshot, then the disk bandwidth

CHAPTER 5. LOG COMPACTION 55

overhead for snapshotting will be small. However, this can result in needlessly large logs for small

state machines.

A better approach involves comparing the snapshot’s size with the log’s size. If the snapshot

will be many times smaller than the log, it is probably worthwhile to take a snapshot. However,

calculating the size of a snapshot before it is taken can be difficult and burdensome, imposing a

significant bookkeeping burden for the state machine, or requiring almost as much work as actually

taking a snapshot to compute the size dynamically. Compressing snapshot files also results in space

and bandwidth savings, but it is hard to predict how large the compressed output will be.

Fortunately, using the size of the previous snapshot rather than the size of the next one results in

reasonable behavior. Servers take a snapshot once the size of the log exceeds the size of the previous

snapshot times a configurable expansion factor. The expansion factor trades off disk bandwidth for

space utilization. For example, an expansion factor of 4 results in about 20% of the disk’s bandwidth

being used towards snapshotting (for every 1 byte of snapshot, 4 bytes of log entries will be written),

and requires about 6 times the disk capacity as that needed to store a single copy of the state (the

old snapshot, a log 4 times bigger than that, and the new snapshot being written).

Snapshotting still creates a burst of CPU and disk bandwidth usage that might impact client

performance. This can be mitigated with additional hardware; for example, a second disk drive can

be used to provide the additional disk bandwidth.

It may also be possible to schedule snapshots in a way that client requests never wait on a server

that is snapshotting. In this approach, servers would coordinate so that only up to a minority of the

servers in the cluster would snapshot at any one time (when possible). Because Raft only requires a

majority of servers to commit log entries, the minority of snapshotting servers would normally have

no adverse effect on clients. When a leader wished to snapshot, it would step down first, allowing

another server to manage the cluster in the meantime. If this approach was sufficiently reliable, it

could also eliminate the need to snapshot concurrently; servers could just be unavailable while they

took their snapshots (though they would count against the cluster’s ability to mask failures). This

is an exciting opportunity for future work because of its potential to both improve overall system

performance and reduce mechanism.

5.1.3 Implementation concerns

This section reviews the major components needed for a snapshotting implementation and discusses

the difficulties with implementing them:

CHAPTER 5. LOG COMPACTION 56

• Saving and loading snapshots: Saving a snapshot involves serializing the state machine’s

state and writing that data out to a file, while loading is the reverse process. We found this to

be fairly straightforward, although it was somewhat tedious to serialize the various types of

data objects from their native representations. A streaming interface from the state machine

to a file on disk is useful to avoid buffering the entire state machine state in memory; it may

also be beneficial to compress the stream and apply a checksum to it. LogCabin writes each

snapshot to a temporary file first, then renames the file when writing is complete and has been

flushed to disk; this ensures that no server loads a partially written snapshot on startup.

• Transferring snapshots: Transferring snapshots involves implementing the leader and fol-

lower sides of the InstallSnapshot RPC. This is fairly straightforward and may be able to

share some code with saving snapshots to and loading snapshots from disk. The performance

of this transfer is usually not very important (a follower that needs this state has not been

participating in the commitment of entries, so it is probably not needed soon; on the other

hand, if the cluster suffers additional failures, it may need to catch up the follower to restore

availability).

• Eliminating unsafe log accesses and discarding log entries: We originally designed LogCabin

without worrying about log compaction, so the code assumed that if entry i was present in the

log, entries 1 through i−1 would also be present. This is no longer true with log compaction;

for example, when determining the term for the previous entry in the AppendEntries RPC, that

entry might have been discarded. Removing these assumptions throughout the code required

careful reasoning and testing. This would have been easier with help from a more powerful

type system, if the compiler could enforce that every access to the log also handled the case

that the index was out of bounds. Once we had made all the log accesses safe, discarding the

prefix of the log was straightforward. Until this point, we could only test the saving, loading,

and transferring snapshots in isolation, but when log entries can be safely discarded, these can

all start to be exercised in system-wide tests.

• Snapshotting concurrently with copy-on-write: Snapshotting concurrently may require re-

working the state machine or leveraging the operating system’s fork operation. LogCabin

currently uses fork, which interacts poorly with threads and C++ destructors; getting this to

work correctly presented some difficulty. However, it is a small amount of code and com-

pletely eliminates the need to modify the state machine’s data structures, so we think it was

the right approach.

CHAPTER 5. LOG COMPACTION 57

• Deciding when to snapshot: We recommend taking snapshots after applying every log entry

during development, since that can help catch bugs quickly. Once the implementation is com-

plete, a more useful policy of when to snapshot should be added (e.g., using statistics about

the size of Raft log and the size of the last snapshot).

We found piecewise development and testing of snapshotting to be challenging. Most of these

components must be in place before it is possible to discard log entries, but only then will many of

the new code paths be exercised in system-wide tests. Thus, implementers should consider the order

in which to implement and test these components carefully.

5.2 Snapshotting disk-based state machines

This section discusses a snapshotting approach for large state machines (on the order of tens or

hundreds of gigabytes) that use disk as their primary location of record. These state machines behave

differently in that they always have a copy of the state ready on disk in case of a crash. Applying

each entry from the Raft log mutates the on-disk state and effectively arrives at a new snapshot.

Thus, once an entry is applied, it can be discarded from the Raft log. (State machines can also buffer

writes in memory in hopes of achieving better disk efficiency; once they are written to disk, the

corresponding entries can be discarded from the Raft log.)

The main problem with disk-based state machines is that mutating state on disk can lead to

poor performance. Without write buffering, it requires one or more random disk writes for every

command applied, which can limit the system’s overall write throughput (and write buffering might

not help much). Section 5.3 discusses incremental approaches to log compaction which write to disk

more efficiently with large, sequential writes.

Disk-based state machines must be able to provide a consistent snapshot of the disk for the pur-

pose of transmitting it to slow followers. Although they always have a snapshot on disk, they are

continuously modifying it. Thus, they still require copy-on-write techniques to retain a consistent

snapshot for a long enough period to transmit it. Fortunately, disk formats are almost always divided

into logical blocks, so implementing copy-on-write in the state machine should be straightforward.

Disk-based state machines can also rely on operating system support for their snapshots. For ex-

ample, LVM (logical volume management) on Linux can be used to create snapshots of entire disk

partitions [70], and some recent file systems allow snapshotting individual directories [19].

Copying a snapshot of a disk image can take a long time, and as modifications to the disk

CHAPTER 5. LOG COMPACTION 58

accumulate, so does the extra disk usage required to retain the snapshot. Although we haven’t im-

plemented disk-based snapshotting, we speculate that disk-based state machines could avoid most

of this overhead by transmitting their disk contents with the following algorithm:

1. For each disk block, track the time it was last modified.

2. While continuing normal operation, transmit the entire disk contents to a follower block by

block. During this process, no extra disk space is used on the leader. Since blocks are being

modified concurrently, this is likely to result in an inconsistent disk image on the follower. As

each block is transferred from the leader, note its last modification time.

3. Take a copy-on-write snapshot of the disk contents. Once this is taken, the leader has a con-

sistent copy of its disk contents, but additional disk space is used as modifications to the disk

occur due to continued client operations.

4. Retransmit only the disk blocks that were modified between when they were first transmitted

in Step 2 and when the snapshot was taken in Step 3.

Hopefully, most of the blocks of the consistent snapshot will have already been transmitted by

the time it is created in Step 3. If that is the case, the transfer in Step 4 will proceed quickly: the

additional disk capacity used to retain the snapshot on the leader during Step 4 will be low, and the

additional network bandwidth used during Step 4 to retransmit modified blocks will also be low.

5.3 Incremental cleaning approaches

Incremental approaches to compaction, such as log cleaning [97, 98] and log-structured merge

trees [84, 17] (LSM trees), are also possible. Although they are more complex than snapshotting,

incremental approaches have several desirable features:

• They operate on only a fraction of the data at once, so they spread the load of compaction

evenly over time.

• They write to disk efficiently, both in normal operation and while compacting. They use large,

sequential writes in both cases. Incremental approaches also selectively compact parts of the

disk with the most reclaimable space, so they write less data to disk than snapshotting for

memory-based state machines (which rewrites all of disk on every snapshot).

CHAPTER 5. LOG COMPACTION 59

• They can transfer consistent state snapshots fairly easily because they do not modify regions

of disk in place.

Section 5.3.1 and Section 5.3.2 first describe the basics of log cleaning and LSM trees in general.

Then, Section 5.3.3 discusses how they could be applied to Raft.

5.3.1 Basics of log cleaning

Log cleaning was introduced in the context of log-structured file systems [97] and has recently been

proposed for in-memory storage systems such as RAMCloud [98]. In principle, log cleaning can

be used for any type of data structure, though some would be harder to implement efficiently than

others.

Log cleaning maintains the log as the place of record for the system’s state. The layout is opti-

mized for sequential writing, and it makes read operations effectively random access. Thus, indexing

structures are needed to locate data items to read.

In log cleaning, the log is split into consecutive regions called segments. Each pass of the log

cleaner compacts the log using a three-step algorithm:

1. It first selects segments to clean that have accumulated a large fraction of obsolete entries.

2. It then copies the live entries (those that contribute to the current system state) from those

segments to the head of the log.

3. Finally, it frees the storage space for the segments, making that space available for new seg-

ments.

To minimize the effect on normal operation, this process can be done concurrently [98].

As a result of copying the live entries forwards to the head of the log, the entries get to be out of

order for replay. The entries can include additional information (e.g., version numbers) to recreate

the correct ordering when the log is applied.

The policy of which segments are selected for cleaning has a big impact on performance; prior

work proposes a cost-benefit policy that factors in not only the amount of space utilized by live

entries but also how long those entries are likely to remain live [97, 98].

Determining whether entries are live is the state machine’s responsibility. For example, in a key-

value store, a log entry to set a key to a particular value is live if the key exists and is currently set

to the given value. Determining whether a log entry that deletes a key is live is more subtle: it is live

CHAPTER 5. LOG COMPACTION 60

as long as any prior entries setting that key are present in the log. RAMCloud preserves deletion

commands (called tombstones) as necessary [98], but another approach is to periodically write out

a summary of the keys that are present in the current state, then all log entries regarding keys not

listed are not live. Key-value stores are a fairly simple example; other state machines are possible,

but unfortunately, determining liveness will be different for each.

5.3.2 Basics of log-structured merge trees

Log-structured merge trees (LSM trees) were first described by O’Neil [84] and were later popu-

larized in distributed systems by BigTable [17]. They are used in systems such as Apache Cassan-

dra [1] and HyperDex [27] and are available as libraries such as LevelDB [62] and its forks (e.g.,

RocksDB [96] and HyperLevelDB [39]).

LSM trees are tree-like data structures that store ordered key-value pairs. At a high level, they

use disk similarly to log cleaning approaches: they write in large sequential strides and do not mod-

ify data on disk in place. However, instead of maintaining all state in the log, LSM trees reorganize

the state for better random access.

A typical LSM tree keeps recently written keys in a small log on disk. When the log reaches

a fixed size, it is sorted by key and written to a file called a run in sorted order. Runs are never

modified in place, but a compaction process periodically merges multiple runs together, producing

new runs and discarding the old ones. The merge is reminiscent of merge sort; when a key is in

multiple input runs, only the latest version is kept, so the produced runs are more compact. The

compaction strategy used in LevelDB is summarized in Figure 5.1; it segregates runs by age for

efficiency (similar to log cleaning).

During normal operation, the state machine can operate on this data directly. To read a key,

it first checks to see if that key was modified recently in its log, then checks each run. To avoid

checking every run for a key on every lookup, some systems create a bloom filter for each run (a

compact data structure which can say with certainty in some cases that a key does not appear in a

run, though it may sometimes require searching a run even when a key is not present).

5.3.3 Log cleaning and log-structured merge trees in Raft

We have not attempted to implement log cleaning or LSM trees in Raft, but we speculate that both

would work well. Applying LSM trees to Raft appears to be fairly straightforward. Because the

Raft log already stores recent entries durably on disk, the LSM tree can keep recent data in a more

CHAPTER 5. LOG COMPACTION 61

(a) Cleaning the Raft log directly would lead to many holes, which would add significant complexity to Raft
and its interaction with the state machine.

(b) The state machine could instead structure its own data as a log and clean that log independently, without
involving Raft.

Figure 5.4: Two possible approaches to log cleaning in Raft.

convenient tree format in memory. This would be fast for servicing lookups, and when the Raft

log reached a fixed size, the tree would already be in sorted order to write to disk as a new run.

Transferring the state from the leader to a slow follower requires sending all the runs to the follower

(but not the in-memory tree); fortunately, runs are immutable, so there is no concern of the runs

being modified during the transfer.

Applying log cleaning to Raft is less obvious. We first considered an approach in which the Raft

log was divided into segments and cleaned (see Figure 5.4(a)). Unfortunately, cleaning would place

a lot of holes in the log where segments were freed, which would require a modified approach to log

replication. We think this approach could be made to work, but it adds significant complexity to Raft

and its interaction with the state machine. Moreover, since only the leader can append to the Raft

log, cleaning would need to be leader-based, which would waste the leader’s network bandwidth

(this is discussed further in Section 5.4).

A better approach would be to handle log cleaning similarly to LSM trees: Raft would keep a

contiguous log for recent changes, and the state machine would keep its own state as a log, but these

logs would be logically distinct (see Figure 5.4(b)). When the Raft log grew to a fixed size, its new

entries would be written as a new segment in the state machine’s log, and the corresponding prefix

of the Raft log would be discarded. Segments in the state machine would be cleaned independently

on each server, and the Raft log would remain entirely unaffected by this. We prefer this approach

CHAPTER 5. LOG COMPACTION 62

over cleaning the Raft log directly, since the complexity of log cleaning is encapsulated entirely in

the state machine (the interface between the state machine and Raft remains simple), and servers

can clean independently.

As described, this approach would require the state machine to write all of Raft’s log entries into

its own log (though it could do so in large batches). This additional copy could be optimized away

by directly moving a file consisting of log entries from Raft’s log and incorporating that file into

the state machine’s data structures. This could be a helpful optimization for performance-critical

systems, but unfortunately, it would more tightly couple the state machine and the Raft module,

since the state machine would need to understand the on-disk representation of the Raft log.

5.4 Alternative: leader-based approaches

The log compaction approaches presented in this chapter depart from Raft’s strong leader princi-

ple, since servers compact their logs without the knowledge of the leader. However, we think this

departure is justified. While having a leader helps avoid conflicting decisions in reaching consen-

sus, consensus has already been reached when snapshotting, so no decisions conflict. Data still only

flows from leaders to followers, but followers can now reorganize their data independently.

We also considered leader-based approaches to log compaction, but any benefits are usually

outweighed by performance considerations. It would be wasteful for the leader to compact its log,

then send the result to the followers, when they could just as well compact their own logs indepen-

dently. Sending the redundant state to each follower would waste network bandwidth and slow the

compaction process. Each follower already has the information needed to compact its own state,

and the leader’s outbound network bandwidth is usually Raft’s most precious (bottleneck) resource.

For memory-based snapshots, it is typically much cheaper for a server to produce a snapshot from

its local state than it is to send and receive one over the network. For incremental compaction ap-

proaches, this depends a bit more on the hardware configuration, but we also expect independent

compaction to be cheaper.

5.4.1 Storing snapshots in the log

One possible benefit to leader-based approaches is that, if all the system state could be stored in

the log, then new mechanisms to replicate and persist the state would not be needed. Thus, we

considered a leader-based approach to snapshotting in which the leader would create a snapshot and

store the snapshot as entries in the Raft log, as shown in Figure 5.5. The leader would then send

CHAPTER 5. LOG COMPACTION 63

Figure 5.5: A leader-based approach that stores the snapshot in chunks in the log, interleaved
with client requests. The snapshotting process is started at the start entry, and it completes by
the end entry. The snapshot is stored in several log entries between start and end. So that client
requests can proceed in parallel with snapshotting, each entry is limited in size, and the rate at
which the entries are appended to the log is limited: the next snapshot chunk is only appended
to the log when the leader learns that the previous snapshot chunk has been committed. Once
each server learns that the end entry is committed, it can discard the entries in its log up to the
corresponding start entry. Replaying the log requires a two pass algorithm: the last complete
snapshot is applied first, then the client requests after the snapshot’s start entry are applied.

this snapshot to each of its followers using the AppendEntries RPC. To reduce any disruption on

normal operation, each snapshot would be split into many entries and interleaved with normal client

commands in the log.

This would achieve better economy of mechanism than storing the snapshot outside the log,

since servers would not need separate mechanisms to transfer snapshots or persist them (they would

be replicated and persisted just like other log entries). However, in addition to wasting network

bandwidth for followers that could just as easily produce their own snapshots, this has a serious

problem. If a leader fails in the middle of creating a snapshot, it leaves a partial snapshot in the

servers’ logs. In principle this could happen repeatedly and exhaust servers’ storage capacity with

garbage accumulated from numerous failed snapshotting attempts. Thus, we don’t think this mech-

anism is viable in practice.

5.4.2 Leader-based approach for very small state machines

For very small state machines, storing the snapshot in the log not only becomes viable but can also

be simplified significantly. If the snapshot is small enough (up to about one megabyte), it can fit

comfortably in a single log entry without interrupting normal operation for too long. To compact

the servers’ logs in this way, the leader would:

CHAPTER 5. LOG COMPACTION 64

1. Stop accepting new client requests;

2. Wait for all entries in its log to be committed and its state machine to have applied all entries

in its log;

3. Take a snapshot (synchronously);

4. Append the snapshot into a single log entry at the end of its log; and

5. Resume accepting new client requests.

Once each server learned that the snapshot entry was committed, it could discard every entry before

the snapshot in its log. This approach would cause a small availability gap while client requests

were stopped and the snapshot entry was transferred, but its impact would be limited for very small

state machines.

This simpler approach avoids the implementation effort of persisting snapshots outside the log,

transferring them using a new RPC, and snapshotting concurrently. However, successful systems

tend to be used more than their original designers intended, and this approach would not work well

for larger state machines.

5.5 Conclusion

This chapter discussed several approaches to log compaction in Raft, which are summarized in

Figure 5.1. Different approaches are suitable for different systems, depending on the size of the

state machine, the level of performance required, and the amount of complexity budgeted. Raft

supports a wide variety of approaches that share a common conceptual framework:

• Each server compacts the committed prefix of its log independently.

• The basic interaction between the state machine and Raft involves transferring responsibility

for a prefix of the log from Raft to the state machine. Once the state machine has applied

commands to disk, it instructs Raft to discard the corresponding prefix of the log. Raft retains

the index and term of the last entry it discarded, along with the latest configuration as of that

index.

• Once Raft has discarded a prefix of the log, the state machine takes on two new responsi-

bilities: loading the state on a restart and providing a consistent image to transfer to a slow

follower.

Snapshotting for memory-based state machines is used successfully in several production sys-

tems, including Chubby and ZooKeeper, and we have implemented this approach in LogCabin.

CHAPTER 5. LOG COMPACTION 65

Although operating on an in-memory data structure is fast for most operations, performance during

the snapshotting process may be significantly impacted. Snapshotting concurrently helps to hide the

resource usage, and in the future, scheduling servers across the cluster to snapshot at different times

might keep snapshotting from affecting clients at all.

Disk-based state machines that mutate their state in place are conceptually simple. They still

require copy-on-write for transferring a consistent disk image to other servers, but this may be a

small burden with disks, which naturally split into blocks. However, random disk writes during

normal operation tend to be slow, so this approach will limit the system’s write throughput.

Ultimately, incremental approaches can be the most efficient form of compaction. By operating

on small pieces of the state at a time, they can limit bursts in resource usage (and they can also

compact concurrently). They can also avoid writing the same data out to disk repeatedly; stable

data should make its way to a region of disk that does not get compacted often. While implement-

ing incremental compaction can be complex, this complexity can be offloaded to a library such as

LevelDB. Moreover, by keeping data structures in memory and caching more of the disk in memory,

the performance for client operations with incremental compaction can approach that of memory-

based state machines.

Chapter 6

Client interaction

This chapter describes several issues in how clients interact with a Raft-based replicated state ma-

chine:

• Section 6.1 describes how clients find the cluster, even when its set of members can change

over time;

• Section 6.2 describes how clients’ requests are routed to the cluster leader for processing;

• Section 6.3 describes how Raft provides linearizable consistency [34]; and

• Section 6.4 describes how Raft can process read-only queries more efficiently.

Figure 6.1 shows the RPCs that clients use to interact with the replicated state machine; the elements

of these RPCs are discussed throughout the chapter. These issues apply to all consensus-based

systems, and Raft’s solutions are similar to other systems.

This chapter assumes that the Raft-based replicated state machine is exposed to clients directly

as a network service. Raft can alternatively be integrated directly into a client application. In this

case, some issues in client interaction may be pushed up a level to network clients of the embedding

application. For example, network clients of the embedding application would have a similar prob-

lem in finding the application’s cluster as clients of a Raft network service have in finding the Raft

cluster.

6.1 Finding the cluster

When Raft is exposed as a network service, clients must locate the cluster in order to interact with the

replicated state machine. For clusters with fixed membership, this is straightforward; for example,

the network addresses of the servers can be stored statically in a configuration file. However, finding

66

CHAPTER 6. CLIENT INTERACTION 67

���������	�
������ ������	���������
���� �������������	�

���������� ����

���������	

����� �����������������
������ ��������	

����
��	

������ ������������
��������
������ ����	

�������� ������
����������������

������

���������� �������������
�������������������

�����������
����������	

�� ���	�!�������� �����������������������"� ���������

��������������#�

#� $������������
������� ���	�������������������%�����

&� '����
��������(�����
��������������������(������

������

�� '��������������������������� ���� ������������	������

��)���	�����������

*� $�������������
����� �������
���������������

��������(��"����	

�� +��
���� ����	

,� ���	��������������
���������

�
������������

���������	�
������ �������	� ��������
���� ����

���������	

��������
������������"� ������� ����&�

����������	 ����������� �����
���� ������

��		��� �����������������
��������	�����
����

����
��	

������ ������������
�������������
������

�������� ������
����������������

������

���������� �������������
������������������������#�

�����������
����������	

�� ���	�!�������� ����������������������"� ���������

��������������#�

#� �������
������� ����"�������
�������
����� �

&� ���	�'�''��!���+� ��� ��������
�������
������ ������

��������� ����
����%�� ������
�!�� ������	����
������

����&�

�� ���������
�!�� ������	����
������ �����
������ ����	����

������������������ ����&�

*� ����	�
������� �����"������

�� '����������
��������������������
�!�� ����
������

���
������	���������������� ����
���� ����&�

,� ���	��������������
���������

�
��������������

���������	�����
������ �������������������� ����������������

�����
������������ ���&

������������

����
��	

������ ������������
����� ��"�������
����

�������� ����������������� ����
������������

���������� �������������
�������������������

�����������
����������	

�� ���	�!�������� �����������������������"� ���������

��������������#�

#� ������� ��"�����
������� ����"�������
�������
����� �

&� ����	�
������� �����"������������
���"� �������� ��������

����

�� ���	���������������
��������������� ������"�����(����

������"�����
�������
�����������

���������
�������

� �������
����"� �������������������� ���	�����"�������

� ������
���� �������������������� ��

������� ���������

��������� ����)���	�������������
������ ����������� ����#�

��
��������������

Figure 6.1: Clients invoke the ClientRequest RPC to modify the replicated state; they invoke
the ClientQuery RPC to query the replicated state. New clients receive their client identifier
using a RegisterClient RPC, which helps identify when session information needed for lin-
earizability has been discarded. In the figure, servers that are not leaders redirect clients to the
leader, and read-only requests are serviced without relying on clocks for linearizability (the
text presents alternatives). Section numbers such as §6.3 indicate where particular features are
discussed.

CHAPTER 6. CLIENT INTERACTION 68

the cluster when its set of servers can change over time (as described in Chapter 4) is a bigger

challenge. There are two general approaches:

1. Clients can use network broadcast or multicast to find all cluster servers. However, this will

only work in particular environments that support these features.

2. Clients can discover cluster servers via an external directory service, such as DNS, that is

accessible at a well-known location. The list of servers in this external system need not be

consistent, but it should be inclusive: clients should always be able to find all of the cluster

servers, but including a few additional servers that are not currently members of the cluster is

harmless. Thus, during cluster membership changes, the external directory of servers should

be updated before the membership change to include any servers soon to be added to the

cluster, then updated again after the membership change is complete to remove any servers

that are no longer part of the cluster.

LogCabin clients currently use DNS to find the cluster. LogCabin does not currently update DNS

records automatically before and after membership changes (this is left to administrative scripts).

6.2 Routing requests to the leader

Client requests in Raft are processed through the leader, so clients need a way to find the leader.

When a client first starts up, it connects to a randomly chosen server. If the client’s first choice is

not the leader, that server rejects the request. In this case, a very simple approach is for the client

to try again with another randomly chosen server until it finds the leader. If clients choose servers

randomly without replacement, this naı̈ve approach is expected to find the leader of an n-server

cluster after
n +1

2
attempts, which may be fast enough for small clusters.

Routing requests to the leader can also be made faster with simple optimizations. Servers usually

know the address of the current cluster leader, since AppendEntries requests include the leader’s

identity. When a server that is not leader receives a request from a client, it can do one of two

things:

1. The first option, which we recommend and which LogCabin implements, is for the server to

reject the request and return to the client the address of the leader, if known. This allows the

client to reconnect to the leader directly, so future requests can proceed at full speed. It also

takes very little additional code to implement, since clients already need to reconnect to a

different server in the event of a leader failure.

CHAPTER 6. CLIENT INTERACTION 69

2. Alternatively, the server can proxy the client’s request to the leader. This may be simpler in

some cases. For example, if a client connects to any server for read requests (see Section 6.4),

then proxying the client’s write requests would save the client from having to manage a dis-

tinct connection to the leader used only for writes.

Raft must also prevent stale leadership information from delaying client requests indefinitely.

Leadership information can become stale all across the system, in leaders, followers, and clients:

• Leaders: A server might be in the leader state, but if it isn’t the current leader, it could be

needlessly delaying client requests. For example, suppose a leader is partitioned from the

rest of the cluster, but it can still communicate with a particular client. Without additional

mechanism, it could delay a request from that client forever, being unable to replicate a log

entry to any other servers. Meanwhile, there might be another leader of a newer term that is

able to communicate with a majority of the cluster and would be able to commit the client’s

request. Thus, a leader in Raft steps down if an election timeout elapses without a successful

round of heartbeats to a majority of its cluster; this allows clients to retry their requests with

another server.

• Followers: Followers keep track of the leader’s identity so that they can redirect or proxy

clients. They must discard this information when starting a new election or when the term

changes. Otherwise, they might needlessly delay clients (for example, it would be possible

for two servers to redirect to each other, placing clients in an infinite loop).

• Clients: If a client loses its connection to the leader (or any particular server), it should

simply retry with a random server. Insisting on being able to contact the last known leader

would result in unnecessary delays if that server failed.

6.3 Implementing linearizable semantics

As described so far, Raft provides at-least-once semantics for clients; the replicated state machine

may apply a command multiple times. For example, suppose a client submits a command to a leader

and the leader appends the command to its log and commits the log entry, but then it crashes before

responding to the client. Since the client receives no acknowledgment, it resubmits the command to

the new leader, which in turn appends the command as a new entry in its log and also commits this

new entry. Although the client intended for the command to be executed once, it is executed twice.

CHAPTER 6. CLIENT INTERACTION 70

Figure 6.2: An example of an incorrect results that can arise from duplicated commands. A
client submits a command to a replicated state machine to acquire a lock. The client’s first
command acquires the lock, but the client never receives the acknowledgment. When the client
retries the request, it finds that the lock is already taken.

Commands can also be applied multiple times even without the client’s involvement if the network

may duplicate the client’s requests.

This issue is not unique to Raft; it occurs in most stateful distributed systems. However, these

at-least-once semantics are particularly unsuitable for a consensus-based system, where clients typ-

ically need stronger guarantees. Problems from duplicated commands can manifest in subtle ways

that are difficult for clients to recover from. These problems cause either incorrect results, incorrect

states, or both. Figure 6.2 shows an example of an incorrect result: a state machine is providing a

lock, and a client finds it is unable to acquire the lock because its original request—for which it re-

ceived no acknowledgment—has already acquired the lock. An example of an incorrect state would

be an increment operation, where the client intends for a value to increment by one but it instead

increments by two or more. Network-level reordering and concurrent clients can lead to even more

surprising results.

Our goal in Raft is to implement linearizable semantics [34], which avoid these classes of prob-

lems. In linearizability, each operation appears to execute instantaneously, exactly once, at some

point between its invocation and its response. This is a strong form of consistency that is simple for

clients to reason about, and it disallows commands being processed multiple times.

To achieve linearizability in Raft, servers must filter out duplicate requests. The basic idea is

that servers save the results of client operations and use them to skip executing the same request

multiple times. To implement this, each client is given a unique identifier, and clients assign unique

CHAPTER 6. CLIENT INTERACTION 71

serial numbers to every command. Each server’s state machine maintains a session for each client.

The session tracks the latest serial number processed for the client, along with the associated re-

sponse. If a server receives a command whose serial number has already been executed, it responds

immediately without re-executing the request.

Given this filtering of duplicate requests, Raft provides linearizability. The Raft log provides a

serial order in which commands are applied on every server. Commands take effect instantaneously

and exactly once according to their first appearance in the Raft log, since any subsequent appear-

ances are filtered out by the state machines as described above.

This approach also generalizes to allow concurrent requests from a single client. Instead of

the client’s session tracking just the client’s latest sequence number and response, it includes a set

of sequence number and response pairs. With each request, the client includes the lowest sequence

number for which it has not yet received a response, and the state machine then discards all responses

for lower sequence numbers.

Unfortunately, sessions cannot be kept forever, as space is limited. The servers must eventually

decide to expire a client’s session, but this creates two problems: how can servers agree on when to

expire a client’s session, and how can they deal with an active client whose session was unfortunately

expired too soon?

Servers must agree on when to expire a client’s session; otherwise, servers’ state machines

could diverge from each other. For example, suppose one server expired the session for a particular

client, then re-applied many of that client’s duplicated commands; meanwhile, the other servers

kept the session alive and did not apply the duplicates. The replicated state machine would become

inconsistent. To avoid such problems, session expiry must be deterministic, just as normal state

machine operations must be. One option is to set an upper bound on the number of sessions and

remove entries using an LRU (least recently used) policy. Another option is to expire sessions based

on an agreed upon time source. In LogCabin, the leader augments each command that it appends to

the Raft log with its current time. Servers reach agreement on this time as part of committing the

log entry; then, the state machines deterministically use this time input to expire inactive sessions.

Live clients issue keep-alive requests during periods of inactivity, which are also augmented with

the leader’s timestamp and committed to the Raft log, in order to maintain their sessions.

The second issue is how to deal with a client that continues to operate after its session was

expired. We expect this to be an exceptional situation; there is always some risk of it, however,

since there is generally no way to know when clients have exited. One option would be to allocate a

new session for a client any time there is no record of it, but this would risk duplicate execution of

CHAPTER 6. CLIENT INTERACTION 72

commands that were executed before the client’s previous session was expired. To provide stricter

guarantees, servers need to distinguish a new client from a client whose session was expired. When

a client first starts up, it can register itself with the cluster using the RegisterClient RPC. This

allocates the new client’s session and returns the client its identifier, which the client includes with

all subsequent commands. If a state machine encounters a command with no record of the session, it

does not process the command and instead returns an error to the client. LogCabin currently crashes

the client in this case (most clients probably wouldn’t handle session expiration errors gracefully

and correctly, but systems must typically already handle clients crashing).

6.4 Processing read-only queries more efficiently

Read-only client commands only query the replicated state machine; they do not change it. Thus, it

is natural to ask whether these queries can bypass the Raft log, whose purpose is to replicate changes

to the servers’ state machines in the same order. Bypassing the log offers an attractive performance

advantage: read-only queries are common in many applications, and the synchronous disk writes

needed to append entries to the log are time-consuming.

However, without additional precautions, bypassing the log could lead to stale results for read-

only queries. For example, a leader might be partitioned from the rest of the cluster, and the rest

of the cluster might have elected a new leader and committed new entries to the Raft log. If the

partitioned leader responded to a read-only query without consulting the other servers, it would

return stale results, which are not linearizable. Linearizability requires the results of a read to reflect

a state of the system sometime after the read was initiated; each read must at least return the results

of the latest committed write. (A system that allowed stale reads would only provide serializability,

which is a weaker form of consistency.) Problems due to stale reads have already been discovered

in two third-party Raft implementations [45], so this issue deserves careful attention.

Fortunately, it is possible to bypass the Raft log for read-only queries and still preserve lineariz-

ability. To do so, the leader takes the following steps:

1. If the leader has not yet marked an entry from its current term committed, it waits until it

has done so. The Leader Completeness Property guarantees that a leader has all committed

entries, but at the start of its term, it may not know which those are. To find out, it needs to

commit an entry from its term. Raft handles this by having each leader commit a blank no-op

entry into the log at the start of its term. As soon as this no-op entry is committed, the leader’s

commit index will be at least as large as any other servers’ during its term.

CHAPTER 6. CLIENT INTERACTION 73

2. The leader saves its current commit index in a local variable readIndex. This will be used as

a lower bound for the version of the state that the query operates against.

3. The leader needs to make sure it hasn’t been superseded by a newer leader of which it is

unaware. It issues a new round of heartbeats and waits for their acknowledgments from a

majority of the cluster. Once these acknowledgments are received, the leader knows that there

could not have existed a leader for a greater term at the moment it sent the heartbeats. Thus,

the readIndex was, at the time, the largest commit index ever seen by any server in the cluster.

4. The leader waits for its state machine to advance at least as far as the readIndex; this is current

enough to satisfy linearizability.

5. Finally, the leader issues the query against its state machine and replies to the client with the

results.

This approach is more efficient than committing read-only queries as new entries in the log,

since it avoids synchronous disk writes. To improve efficiency further, the leader can amortize the

cost of confirming its leadership: it can use a single round of heartbeats for any number of read-only

queries that it has accumulated.

Followers could also help offload the processing of read-only queries. This would improve the

system’s read throughput, and it would also divert load away from the leader, allowing the leader

to process more read-write requests. However, these reads would also run the risk of returning stale

data without additional precautions. For example, a partitioned follower might not receive any new

log entries from the leader for long periods of time, or even if a follower received a heartbeat from

a leader, that leader might itself be deposed and not yet know it. To serve reads safely, the follower

could issue a request to the leader that just asked for a current readIndex (the leader would execute

steps 1–3 above); the follower could then execute steps 4 and 5 on its own state machine for any

number of accumulated read-only queries.

LogCabin implements the above algorithm on leaders, and it amortizes the cost of the heartbeats

across multiple read-only queries under high load. Followers in LogCabin do not currently serve

read-only requests.

6.4.1 Using clocks to reduce messaging for read-only queries

Up until now, the approach to read-only queries presented has provided linearizability in an asyn-

chronous model (where clocks, processors, and messages can all operate at arbitrary speeds). This

CHAPTER 6. CLIENT INTERACTION 74

Figure 6.3: To use clocks instead of messages for read-only queries, the leader would use the
normal heartbeat mechanism to maintain a lease. Once the leader’s heartbeats were acknowl-
edged by a majority of the cluster, it would extends its lease to start+

election timeout
clock drift bound

, since

the followers shouldn’t time out before then. While the leader held its lease, it would service
read-only queries without communication.

level of safety requires communication to achieve: it requires a round of heartbeats to half the cluster

for each batch of read-only queries, which adds latency to the queries. The remainder of this section

explores an alternative in which read-only queries would avoid sending messages altogether by re-

lying on clocks. LogCabin does not currently implement this alternative, and we do not recommend

using it unless necessary to meet performance requirements.

To use clocks instead of messages for read-only queries, the normal heartbeat mechanism would

provide a form of lease [33]. Once the leader’s heartbeats were acknowledged by a majority of

the cluster, the leader would assume that no other server will become leader for about an election

timeout, and it could extend its lease accordingly (see Figure 6.3). The leader would then reply to

read-only queries during that period without any additional communication. (The leadership transfer

mechanism presented in Chapter 3 allows the leader to be replaced early; a leader would need to

expire its lease before transferring leadership.)

The lease approach assumes a bound on clock drift across servers (over a given time period, no

server’s clock increases more than this bound times any other). Discovering and maintaining this

bound might present operational challenges (e.g., due to scheduling and garbage collection pauses,

virtual machine migrations, or clock rate adjustments for time synchronization). If the assumptions

are violated, the system could return arbitrarily stale information.

Fortunately, a simple extension can improve the guarantee provided to clients, so that even under

asynchronous assumptions (even if clocks were to misbehave), each client would see the replicated

CHAPTER 6. CLIENT INTERACTION 75

state machine progress monotonically (sequential consistency). For example, a client would not

see the state as of log index n , then change to a different server and see only the state as of log

index n − 1. To implement this guarantee, servers would include the index corresponding to the

state machine state with each reply to clients. Clients would track the latest index corresponding to

results they had seen, and they would provide this information to servers on each request. If a server

received a request for a client that had seen an index greater than the server’s last applied log index,

it would not service the request (yet).

6.5 Conclusion

This chapter discussed several issues in how clients interact with Raft. The issues of providing lin-

earizability and optimizing read-only queries are particularly subtle in terms of correctness. Unfor-

tunately, when the consensus literature only addresses the communication between cluster servers,

it leaves these important issues out. We think this is a mistake. A complete system must interact

with clients correctly, or the level of consistency provided by the core consensus algorithm will go

to waste. As we’ve already seen in real Raft-based systems, client interaction can be a major source

of bugs, but we hope a better understanding of these issues can help prevent future problems.

Chapter 7

Raft user study

This is the first of four chapters that each evaluate an aspect of Raft:

• This chapter evaluates Raft’s understandability,

• Chapter 8 discusses Raft’s correctness,

• Chapter 9 evaluates Raft’s leader election algorithm, and

• Chapter 10 discusses Raft’s implementations and evaluates its performance.

We designed Raft to be understandable based on our intuitions and anecdotal evidence, but we

wanted to evaluate its understandability more objectively. Although measuring understandability

is inherently difficult, this was important to us for two reasons. First, without an evaluation, our

central claim that Raft is easy to understand would be hard to justify. Second, one of our goals

was to propose understandability as a first-class feature in computer systems, so we also carried the

burden of proposing a way to evaluate it.

To evaluate Raft’s understandability, we conducted an experimental study. This study compared

students’ ability to answer quiz questions about Raft and Paxos after learning each algorithm. Our

participants were upper-level undergraduate and graduate students at Stanford University and the

University of California, Berkeley. We recorded video lectures of Raft and Paxos and created cor-

responding quizzes. The Raft lecture covered the basic Raft algorithm (Chapter 3) and briefly cov-

ered the joint consensus approach to arbitrary membership changes (Section 4.3); the Paxos lecture

covered enough material to create an equivalent replicated state machine, including single-decree

Paxos, Multi-Paxos, cluster membership changes, and a few optimizations needed in practice (such

This study involved human subjects. It was approved under exempt status by the Stanford University IRB (Institutional
Review Board) as Protocol 26663.

76

CHAPTER 7. RAFT USER STUDY 77

as leader election). The lecture videos and slides are available online [88]. The quizzes tested ba-

sic understanding of the algorithms and also required students to reason about corner cases. Each

student watched one video, took the corresponding quiz, watched the second video, and took the

second quiz. About half of the participants did the Paxos portion first and the other half did the

Raft portion first, in order to account for both individual differences in performance and experience

gained from the first portion of the study. We compared participants’ scores on the two quizzes to

determine whether participants showed a better understanding of Raft than Paxos.

On average, participants scored 22.6% higher on the Raft quiz than on the Paxos quiz (out of a

possible 60 points, the mean Raft score was 25.7 and the mean Paxos score was 21.0). Accounting

for whether people learn Paxos or Raft first, a linear regression model predicts scores 12.5 points

higher on the Raft quiz than on the Paxos quiz for students with no prior Paxos experience. Sec-

tion 7.4.1 analyzes the quiz results in detail.

We also surveyed participants after their quizzes to see which algorithm they felt would be easier

to implement or explain. An overwhelming majority of participants reported Raft would be easier

to implement and explain (33 of 41 for each question). However, these self-reported feelings may

be less reliable than participants’ quiz scores. Section 7.4.2 analyzes the survey results in detail.

Our study was unconventional for systems research, and we learned many lessons while design-

ing and conducting it. For example, in a user study, almost all of the work must be done before seeing

any results; this leaves little room for error. Two sections discuss the lessons we learned. Section 7.2

explores the numerous design decisions we considered in developing our methods and materials.

Section 7.5 explores how effectively the experiment convinced others of Raft’s understandability,

and whether it was worth the time and effort we put into it.

7.1 Study questions and hypotheses

Our primary goal in the study was to show Raft’s understandability. A developer should be able to

learn the Raft algorithm well enough to produce a correct implementation, without an unnecessary

burden of time and effort. Unfortunately, Raft’s understandability is difficult to measure directly.

There is no established measure for understandability, and we have no way of telling whether Raft

is the most understandable possible algorithm.

To arrive at an experiment, we needed to formulate metrics that we could measure and hypothe-

ses that we could test. We first needed a proxy for measuring someone’s understandability. We chose

to quiz participants and measure their quiz scores (Section 7.2.3 discusses an alternative of having

CHAPTER 7. RAFT USER STUDY 78

participants implement the algorithms instead). Second, we needed to draw a comparison between

participants’ quiz scores on Raft and on other consensus algorithms. We chose to compare Raft to

Paxos, the most popular consensus algorithm used today.

We wanted to explore the following questions in our study:

1. Is Raft easier to understand than Paxos?

We predicted students would score higher on the Raft quiz than on the Paxos quiz.

2. Which aspects of Raft are hardest to understand?

We were interested in this question as it could help lead to further improvements in Raft’s

understandability. We thought students were most likely to struggle with commitment and

membership changes in Raft. We felt these were the most complex and difficult aspects of Raft

to explain, so students were most likely to have difficulty understanding them (this predates

Raft’s simpler single-server membership change algorithm). We also felt that Paxos’ α-based

membership approach was simpler to explain (though the secondary issues it leaves unsolved

are significant).

3. How does knowing Paxos affect learning Raft, and vice versa?

We predicted that students would generally score higher on their second quiz. We had two

reasons for this. First, consensus algorithms share fundamental concepts, and students should

be able to grasp a concept more easily when seeing it a second time. Second, since the lectures

and quizzes followed the same format, we thought students would gain useful experience

during the first lecture and quiz.

4. Do people prefer to use Raft over alternatives?

We predicted Raft’s understandability would result in a preference to implement and explain

Raft.

7.2 Discussion about the methods

Because there is little precedent for this sort of experiment in computer systems literature, we

reasoned through many our experimental design decisions from first principles. We are especially

thankful for Scott Klemmer’s valuable help during this process. This section explains why we ar-

rived at our methods by describing the alternatives we considered for each decision, including:

CHAPTER 7. RAFT USER STUDY 79

• Our choice of participants and how to motivate their participation (Section 7.2.1),

• How to teach the algorithms to the participants (Section 7.2.2),

• How to test their understanding (Section 7.2.3),

• How to evaluate their performance (Section 7.2.4),

• What questions to ask in the survey (Section 7.2.5), and

• How to discover and fix problems in the study before starting (Section 7.2.6).

The methods we ultimately decided to use are then presented in Section 7.3 in a more formal APA

(American Psychological Association) style.

One common principle we applied was to test participants at the start of the learning curve for

the algorithms. We wanted to see how easily they could move from no knowledge to a moderate level

of understanding. While we hoped that our participants would gain at least a basic understanding of

both algorithms, we did not want to over-prepare them. Given infinite time, most participants will

eventually understand any consensus algorithm. Thus, to measure a difference between algorithms,

we had to test participants at the start of the learning curve. For example, this meant we faced a

tension in motivating participants, as discussed in the next subsection: we wanted them to try, but

we did not want them to study the algorithms extensively.

7.2.1 Participants

We invited students from both Stanford and Berkeley to participate in our study. This both increased

our sample size and broadened the generality of our results. We chose to use the same materials and

procedures in both schools so that we could compare participants’ performance across schools.

We considered various ways to use course grades to incentivize students to participate in the

study. We wanted students to put equal effort into learning each algorithm, and we only wanted

them to watch the lectures to prepare (without using outside information or studying excessively).

Unfortunately, we had substantial concerns for each approach we considered to incentivize students:

• If students’ participation affected their course grades but they earned credit for even incorrect

answers, we were concerned that students might not pay attention to the lectures. For example,

a student who skipped the lectures but filled in the quizzes with any answer that came to mind

would still receive full credit towards his/her course grade.

• If students’ scores on their quizzes affected their course grades, we were concerned that stu-

dents might spend too much time preparing for the quizzes or that they might work harder

on the more difficult to understand algorithm in order to earn the same grade. We wanted to

CHAPTER 7. RAFT USER STUDY 80

school total ≥ one quiz ≥ both quizzes full study incentive

Stanford 34 33 31 31 5% part. grade, final exam
Berkeley 46 16 12 11 none
Total 80 49 43 42 -

Table 7.1: Study participation. The “total” column lists the number of students in each class;
the “≥ one quiz” column lists the number that completed at least one quiz; the “≥ both quizzes”
column lists the number that completed at least both quizzes; and the “full study” column lists
the number that completed both quizzes and the survey.
The total number of participants is approximate. For Berkeley, this number is based on the
course email list and is likely an over-estimate (only 25 students signed up to do the homework
towards the end of the course).

test participants at the start of the learning curve; we didn’t want students to understand the

algorithms so well that our questions could measure no difference in understanding between

the algorithms. We also wanted them to spend equal effort on each algorithm.

• If students were awarded extra course credit for participation or for good quiz scores, we were

concerned that poorly performing or more stressed students might be overrepresented in our

participants.

• Another idea we considered was to award students all of the course credit for scoring at least

50% on either quiz. Our concern with this approach was that it would leave too many possible

explanations for quiz scores. For example, would students stop after their first algorithm if

they believed they did well enough? Would students choose ahead of time to try to do well on

Raft and not worry about the Paxos quiz (or vice versa)?

For the Stanford students, we ultimately decided to give full course credit (5% of the total course

grade) for reasonable participation in the study. We intentionally left this definition vague, but if a

student appeared to put some effort into the study, we awarded them full course credit. The students

were also informed that the material might show up again on the course’s final exam. Almost every

student in the Stanford class participated (see Table 7.1).

However, the only incentive for the Berkeley participants was the opportunity to learn the ma-

terial. The instructors for the Berkeley class chose not to factor study participation into the course

grades, and the class did not have exams. Even without additional incentives, at least one third of

the students in the Berkeley class participated (see Table 7.1).

CHAPTER 7. RAFT USER STUDY 81

7.2.2 Teaching

We had many options in how to teach the algorithms to the participants. Not only are there many

ways to teach in general, but there are also various approaches to teaching Paxos in particular. Our

goal in the study was to compare the algorithms, not the ways they were conveyed. Therefore, it was

important for the teaching method and style to be consistent. We wanted to convey the algorithms in

similar ways, and we wanted to cover equivalent content. We also wanted participants to spend no

more than a few hours per algorithm. We thought this would be reasonable to ask of our participants,

and we would then be able to test them at the start of the learning curve for each algorithm.

We considered using papers to teach our participants, but this had two problems. First, we could

not find a suitable Paxos paper. This paper would have had to:

• Cover a relatively understandable variant of Paxos (there is no single agreed upon Paxos

algorithm, but some are easier to understand than others);

• Describe it completely enough to build a replicated state machine;

• Be accessible to students with no background in the topic, without needing to understand

related work first; and

• Be of similar quality, style, and length to the Raft paper.

We could have written such a paper, but it would have taken months. The second problem is that

papers take many hours to read, and we wanted the participants to be able to learn the algorithms in

less time.

Instead, we decided to teach the participants through lectures. We estimated that we could cover

enough material for each algorithm in a one-hour lecture. This was short enough that it didn’t

unduly burden our participants, yet it was long enough to cover a significant amount of material at

a comfortable pace. It was also short enough that we could still quiz participants towards the start

of the learning curve for the algorithms.

We chose to have John Ousterhout give the lectures for both algorithms, rather than using a

different lecturer for Paxos. In trying to maximize consistency across the algorithms, we considered

the following factors in our decision:

• Expertise: We wanted an equivalent level of expertise on each algorithm, and we didn’t

consider ourselves experts on Paxos before the study. We could have brought in an expert

on Paxos to give the Paxos lecture. Instead, Ousterhout based his slides on those of experts,

and in preparing for the Paxos lecture, we believe we learned Paxos well enough to consider

ourselves sufficiently knowledgeable in it.

CHAPTER 7. RAFT USER STUDY 82

• Teaching style and ability: Ousterhout was able to keep this very consistent across his two

lectures, whereas we might have struggled with different teaching styles and abilities if a

separate lecturer gave the Paxos lecture.

• Lecture quality: Ousterhout giving both lectures raises concerns that he might not have put in

the effort to produce an equally good Paxos lecture. However, he tried to produce equivalent

lectures, and this is mitigated by basing his Paxos slides off of those of experts. (Also, the

Raft lecture had known deficiencies during the study: we made some last-minute changes to

fix a bug in it that could have been clearer if we had more time. Moreover, it presented the

more complex form of membership changes, as it predated the simpler single-server change

algorithm.) Balancing lecture quality might have been more difficult with a different Paxos

lecturer, since the second lecturer may not have been as committed to the study.

We wanted to teach a variant of Paxos that was relatively understandable and complete, while

staying true to the fundamentals of Paxos. Unfortunately, there is no agreed upon variant of Paxos;

different instructors disagree on which variant to teach. We ultimately settled on a variant from

David Mazières [78], which is not only efficient but also relatively understandable. However, we

used Leslie Lamport’s α approach [49] to reconfiguration rather than Mazières’s. Although Lam-

port’s approach has the undesirable property that it limits Paxos’s concurrency during normal op-

eration, we (including Mazières) believe its basic idea is easier to understand than Mazières’s and

other approaches.

We recorded both lectures on video rather than having John Ousterhout present them in person.

There were several advantages to recording them:

• We could fit more material in the same amount of time, since we could re-record segments

when we made mistakes.

• We were able to debug problems with our lectures during the two pilot studies we ran for each

algorithm (see Section 7.2.6). Having them recorded allowed us to catch issues and fix them

reliably.

• Participants could watch the lectures in different orders and still see the same exact material.

• Students could watch the lectures at their own pace and at their own schedule. They could

re-watch segments or speed up and slow down the videos as they wished. We did not enforce

time limits on the lectures, so students could watch them at their own pace.

• The video lectures remain as documentation for the study and could be used in a repeated

study. Other people outside the study have also used the videos to learn the algorithms on

CHAPTER 7. RAFT USER STUDY 83

their own (our Raft lecture has 14,480 views on YouTube as of August 2014, and our Paxos

lecture has 9,200 views).

A possible disadvantage is that students could not ask questions during the lectures. On the other

hand, questions would have disrupted the consistency benefits of having recorded lectures. For ex-

ample, questions could lead to more material being presented in one lecture than another and could

introduce additional differences between the Stanford and Berkeley groups. We also do not know

how the recorded lectures affected study participation; while our Stanford participation was high,

it’s possible that we could have gotten higher participation at Berkeley by scheduling the lectures in

class.

We attempted to keep the video lectures fairly impersonal to reduce bias. For example, the

video components only showed the lecture slides and not John Ousterhout himself. However, even

Ousterhout’s voice-over may have been subtly biased (though he tried not to be). Concerned readers

should review the lecture videos to decide for themselves; we do not know of any formal techniques

to measure or reduce such bias.

In addition to the video lectures, we provided participants with minor additional materials for

their preparation (lecture notes and algorithm summaries). We discouraged participants from learn-

ing about the algorithms on their own (for example, by reading papers), but we felt that some

additional materials to review before the quiz and to reference during the quiz would be helpful for

the participants. We made copies of the lecture slides available for easier reference, and we provided

participants with algorithm summaries in the form of a (condensed) one-page summary for Raft and

a (sparse) 3.5-page summary for Paxos. These are included in Appendix A.4.

7.2.3 Testing understanding

A key challenge of this study was how to measure participants’ understanding of the algorithms.

We considered having participants implement the algorithms, which would allow us to measure

their ability to build working systems more directly. If feasible, this approach would have been bet-

ter than the quizzes. However, we chose not to do this because of numerous challenges. First, we

estimate that implementing significant portions of Raft or Paxos would take most experts weeks. If

we asked this of our participants, surely we would not have had so many, and we might not have

been able to draw statistically significant conclusions. Moreover, peoples’ ability to develop systems

varies greatly, so to draw statistically significant conclusions, such a study would need large sample

sizes or would need each participant to implement both algorithms. Both options would be difficult

CHAPTER 7. RAFT USER STUDY 84

in practice because of the time commitment required of participants. Even if the participation prob-

lems were solved, it would still be challenging to measure implementations against each other. A

thorough treatment would need to include metrics of correctness, code complexity, and cost, all of

which are challenging to measure.

Instead, we chose to quiz participants to measure their understanding. This required less time

of our participants. As a result, we were able to have each participant learn both algorithms, which

made it easier to factor out individual differences in learning and test-taking abilities. Moreover, it

was easy to compare participants’ performance based on their numeric quiz scores.

Our most difficult challenge in developing the quizzes was how to make them fair. We first

considered using questions that applied equally to both algorithms, but such questions tended to be

too obvious for one of the algorithms because it more directly covered the topic. Instead, we only

used similar questions if the difficulty would also be similar.

We used the following strategy to make the quizzes fair. First, we categorized each question by

difficulty:

• Easy questions were essentially recall: the answer could be found in the lecture with little or

no inference. We expected students to answer nearly all of these correctly.

• Medium questions required the participant to apply an algorithm found in the lecture, but it

should have been straightforward to determine which steps to apply.

• Hard questions required the participant to figure out what rules to apply, combine them in new

ways, and/or extrapolate beyond the lecture material. We expected that few students would be

able to answer these questions perfectly.

Questions in the same difficulty category should require about the same amount of inference and

extrapolation from the lecture material. We (re-)categorized questions after the lectures were created

in order to ease concerns of “teaching to the quiz”.

Second, we assigned point values to each question based on how long we expected it to take.

The point values were intended to reflect how many minutes it would take a reasonably prepared

student to answer the question, based on John Ousterhout’s teaching experience. For example, a

question that was expected to take about five minutes was worth five points.

Third, we balanced the quizzes in categories and points. Each quiz contained 4 points of easy

questions, 26 points of medium questions, and 30 points of hard questions. We also compared the

questions from each quiz side-by-side to confirm that they seemed equally difficult.

We believe the quizzes we produced this way are similar in difficulty, though we have no way

CHAPTER 7. RAFT USER STUDY 85

to know for sure. We ask readers to decide for themselves by reviewing the quizzes found in Ap-

pendix A.

Most of the questions required open-ended short answers. We also considered using multiple

choice questions, which would have been easier to grade objectively. However, we decided on the

open-ended format because we feel it more effectively tests participants’ understanding, as it is less

suggestive of responses.

The quizzes were limited in time so that participants were unable to become experts on the

questions. We did not want to give them enough time to attempt the questions, watch the entire

video again, and then revise the answers.

In order to extract the most information from the quizzes, we made them intentionally difficult.

For example, we didn’t want any participants to earn a perfect score because then we wouldn’t have

been able to distinguish differences between them. However, we later determined that we made the

quizzes a bit too hard: the maximum score was only 46.5 out of 60. For example, most students

earned 0 points on question 8 on each quiz; had we made those questions easier, we might have

been able to better distinguish the differences between those students.

7.2.4 Grading

We graded the quizzes using two passes. The initial (preliminary) grading pass was more subjective,

assigning grades based on perceived understanding. The second (final) pass assigned grades more

objectively. The following steps summarize our procedure:

1. Diego Ongaro and John Ousterhout created a plausible rubric.

2. Ongaro graded the quizzes fairly quickly (grading all participants for a given question at a

time in random order, alternating between Paxos and Raft between each question).

3. Ongaro and Ousterhout revised the rubric based on problems that arose.

4. Ongaro regraded the quizzes more carefully (grading all participants for a given question at

a time in order of their preliminary scores, alternating between Paxos and Raft between each

question).

The final grading rubrics are included in Appendix A along with the quiz questions.

We awarded partial credit in order to gain the most information from the quiz scores as possible.

For example, a blank response demonstrates no understanding, whereas one that is on track to an

answer demonstrates some understanding; we wanted to distinguish these cases. We tried to award

points proportional to the understanding that the participant demonstrated in his/her answer.

CHAPTER 7. RAFT USER STUDY 86

There are two things we could have done better. First, we exposed ourselves to preliminary

scores and results prior to completing the rubric and adjusting the grading. It would have been safer

to avoid this, since it raises concerns that we might have, for example, awarded fewer points to Paxos

answers during the second round of grading if we thought it was going to be a close call. Although

we question this aspect of our procedure, it is not too worrisome because the grades and overall

results and conclusions were essentially the same after the second pass of grading. For example, the

Raft mean was 25.74 after the preliminary pass of grading and 25.72 after the final pass; the Paxos

mean was 20.77 after the preliminary pass, then corrected to 20.98.

Second, we graded the quizzes ourselves, and this may have introduced bias, since we hoped

that the study would show that Raft is easier to understand than Paxos. We graded ourselves because

it takes expertise in the algorithms to develop rubrics and grade responses (which sometimes vary

greatly from each other). Therefore, it was easiest for us to do these tasks ourselves. However, we

could have hired impartial graders to confirm our grading using our rubric.

7.2.5 Survey

We initially considered asking participants whether they understood Raft better than Paxos, rather

than quizzing them. We were informed that such a survey would not be very reliable on its own.

For example, participants might respond favorably towards Raft if they believe that is our desired

outcome (social desirability bias), or they may be affected by wording in the questions. Although

we settled on quizzes for our primary results, there is still some value in asking participants for their

opinions, so we included a short survey for participants to fill out after their second quiz.

Our survey included six questions using five-point scales (Linkert items) and one open-ended

question for general feedback or comments. We tried to keep the survey short to encourage partici-

pation, and the answers were easy to collect and quantify this way.

7.2.6 Pilots

One challenge with this type of study is that it is very costly if things go wrong and the study

needs to be repeated. To mitigate this risk, we attempted to discover and iron out problems with

our materials and procedures before launching the study. Thus, we conducted two pilot studies,

each with two to four volunteer participants who were not part of the normal study. We included

90 points of questions on each of the pilot quizzes; that way we could try more questions than we

intended to keep and would have the option to throw out bad questions (our pilot quizzes included

CHAPTER 7. RAFT USER STUDY 87

more easy questions than the final quizzes, but we cut most of them to shorten the quizzes). We

corrected many problems with the lectures and quizzes during the pilots, and we feel that the pilot

process was essential to the study’s success.

7.3 Methods

This section describes the methods of the Raft user study in a more formal APA (American Psycho-

logical Association) style. It includes many technical details that are less conceptual in nature than

the topics discussed in Section 7.2 but are nevertheless important to the study.

7.3.1 Study design

The experiment employed a within-subjects design in which each participant was quizzed on both

the Paxos and the Raft algorithms. To account for ordering effects, it was also counterbalanced:

about half of the participants learned Paxos and took the Paxos quiz, then learned Raft and took the

Raft quiz; the other half learned Raft and took the Raft quiz, then learned Paxos and took the Paxos

quiz.

There were two key independent variables:

• Which algorithm (Paxos or Raft)?

• Which order (Paxos then Raft, or Raft then Paxos)?

We recorded two additional independent variables, though we hoped their effects would be

minor:

• Which school did the participant come from (Stanford or Berkeley)?

• Did the participant have prior experience with Paxos?

7.3.2 Participants

We invited students from Stanford and Berkeley to participate in our study. Table 7.1 summarizes

the participation from each group and how many participants completed each portion of the study.

The 33 Stanford participants were recruited from the Advanced Operating Systems (CS240)

course at Stanford University offered January through March 2013 and taught by David Mazières.

The students were upper-level undergraduate and graduate students, and a small number of re-

mote professional students (SCPD). They were informed that “reasonable participation” in the study

would award them 5% of their course grade. (They were also offered an alternate option should they

CHAPTER 7. RAFT USER STUDY 88

choose not to participate in the study.) They were also informed that questions on the material may

reappear on the final exam for the course.

The 16 Berkeley participants were recruited from the Distributed Computing (CS294-91) course

at the University of California, Berkeley offered January though May 2013 and taught by Ali Gh-

odsi. The students were mostly graduate-level (though at least one undergraduate student took the

course). It was vaguely suggested to the students that they should participate in the study as part of

the course, but there was no explicit incentive to encourage participation.

7.3.3 Materials

Participants gained access to materials for the study though a password-protected website. The

website allowed participants to proceed with the study at their own pace and at any time of day. The

various materials available on the website are explained in more detail next.

Lectures

Each algorithm had a corresponding video lecture. The lecture slides were designed and created by

John Ousterhout. The Paxos lecture borrowed from slides by Lorenzo Alvisi, Ali Ghodsi, and David

Mazières; the Raft lecture was based on a draft of a paper describing Raft. The slides were made

available to the participants on the study website in both Microsoft PowerPoint and PDF formats.

The videos used a “screencast” format: the video components showed only the slides and a stylus

overlay, and the audio component consisted of Ousterhout verbally explaining the slides. Figure 7.1

shows an example of a slide with the stylus overlay. The videos were recorded in advance so that

students in both ordering groups could use the same exact videos. They were made available to the

students on both the YouTube video hosting website and in MP4 format for download.

The Raft lecture covered the following topics: leader election, log replication, safety, client

interaction, and the joint consensus approach to membership changes. The Paxos lecture covered

enough material to create an equivalent replicated state machine, including single-decree Paxos,

Multi-Paxos, client interaction, membership changes, and a few optimizations needed in practice

(such as leader election). Log compaction was not included in either lecture.

We aimed to create video lectures that were about one hour in length. We tried to balance

the lectures so they covered the material at an equivalent level of detail with similar numbers of

examples. This resulted in the Paxos lecture being slightly longer than the Raft lecture. Table 7.2

compares their lengths using various metrics.

CHAPTER 7. RAFT USER STUDY 89

Figure 7.1: Example lecture slide marked up with stylus overlay. This slide comes from the
Paxos lecture (it shows liveness problems that could arise if two competing proposers were too
synchronized).

algorithm lecture slides lecture duration (MM:SS) lecture word count

Raft 31 58:18 10,053
Paxos 33 (+6%) 66:34 (+14%) 11,234 (+12%)

Table 7.2: Various measures of length for the two lectures. The lecture word count is an ap-
proximation based on automated YouTube transcripts of the lecture videos. The percentages in
parenthesis show the additional length of the Paxos lecture relative to the Raft lecture.

CHAPTER 7. RAFT USER STUDY 90

Supporting materials

Both lectures included optional summaries of the algorithms. For the Raft lecture, the summary was

a single slide (participants needed to zoom into this slide to read it). For Paxos, a 3.5-page summary

of the single-decree and Multi-Paxos algorithms was provided along with the lecture on the study

website. These are included in Appendix A.4. Participants did not need to view the summaries to

score well on the quizzes, but they were provided as quick reference and review materials. We did

not track whether participants actually viewed the summaries.

Quizzes

Each algorithm included a web-based quiz. The quizzes and their solutions and grading rubrics are

provided in Appendix A. The quizzes tested basic understanding of the algorithms and also required

students to reason about corner cases. Most of the questions required open-ended short answers.

Each quiz consisted of eight questions of varying difficulty (some were multi-part questions). We

categorized the questions using a difficulty rating scale (see Section 7.2.3):

• The first question (4 points) was rated easy.

• The next four questions (26 points) were rated medium.

• The last three questions (30 points) were rated hard.

The point values were intended to reflect how many minutes it would take a reasonably prepared

student to answer the question. Participants were given the point values, but questions on the quizzes

were not explicitly labeled with their difficulty ratings.

Unfortunately, the Paxos quiz used in the study had one typo in Question 4. The original question

used in the study and the correction can be found in Appendix A, along with a description of how

the question was graded.

Participants were instructed to complete each quiz within 60 minutes. The website included a

decreasing counter with minute-level granularity (we were advised that finer-grained counters can

cause unnecessary anxiety). No technical measures were employed to force students to submit their

answers within 60 minutes. At the end of 60 minutes, this counter would go negative. However,

participants’ web browsers reported the full elapsed quiz time, and the server kept records of the

time when the participant first opened a quiz and when he/she submitted each quiz. Only four

participants went more than 10% over the time limit (we included those quizzes anyway in the

results presented in Section 7.4.1).

CHAPTER 7. RAFT USER STUDY 91

Survey

Following their second quiz, participants were asked to complete a short web-based survey, which

can be found in Appendix A.3. It consisted of six questions using five-point scales (Linkert items)

and one open-ended question for general feedback or comments. It included questions about their

prior experience with Paxos and whether they would prefer to implement or explain one of the

algorithms over the other.

7.3.4 Dependent measures

Participants’ performance on the quizzes formed the primary dependent measure for this study.

Diego Ongaro graded the quizzes in random order according to a rubric. Ongaro was blind as to

the participants’ schools during grading (and was and still is blind as to the participants’ identities).

Participants’ preferences in the survey were also a dependent measure.

7.3.5 Procedure

Participants were randomly assigned to an ordering group (Paxos first or Raft first) over e-mail.

This e-mail instructed the participants to complete the first quiz by 11:59 p.m. on a Monday and the

second quiz by 11:59 p.m. on that Friday (though we accepted both early and late responses). The

e-mail included a link to the study website and unique login credentials for each participant.

The study website included the materials described above. Participants could visit the website at

any time. They were not timed as they watched the videos or studied the supporting materials. The

website instructed them that they would have 60 minutes to complete the quiz once they opened it.

The website saved the quiz responses frequently and reloaded them in case the participant reopened

the quiz page. After submitting the second quiz, the website prompted the participant to fill out the

survey.

7.4 Results

This section presents the results obtained from our experiment. Section 7.4.1 describes the quiz

results, and Section 7.4.2 describes the survey results.

CHAPTER 7. RAFT USER STUDY 92

Figure 7.2: CDF of participants’ quiz scores. Each curve shows the fraction of participants who
scored at most that many points (right/lower is better); for example, about 47% of participants
scored up to 25 points on the Raft quiz; the remaining 53% scored higher. The maximum pos-
sible score was 60 points on each quiz. 47 participants completed the Paxos quiz; 45 completed
the Raft quiz. Figure 7.7 facets this graph down by question difficulty and ordering.

CHAPTER 7. RAFT USER STUDY 93

7.4.1 Quizzes

Figure 7.2 shows the raw distributions of quiz scores; the Raft scores are generally greater than

the Paxos scores by a few points. The mean Raft score is 4.74 points or 22.6% higher than the

mean Paxos score. We used a statistical significance test to confirm this difference: we conducted

an unpaired Student’s t-test with a one-sided hypothesis that the Raft scores were greater than the

Paxos scores. This test found that the Raft scores (M = 25.72, SD = 10.33) were significantly greater

than the Paxos scores (M = 20.98, SD = 8.57); t(85.55) = 2.39, p = 0.009. In layman’s terms, we can

say with 99% confidence from our sample that the true distribution of Raft quiz scores is greater

than the true distribution of Paxos quiz scores (there is only a 1% chance that we would find such a

difference by random chance in identical distributions; a p-value less than 5% is typically considered

statistically significant).

We also wanted to consider individual differences in learning and test-taking abilities. Because

participants learned and took quizzes on both algorithms, we could look at each participants’ differ-

ence in quiz scores. (Six participants only took one quiz, so we exclude them here.)

Figures 7.3 and 7.4 plot individuals’ quiz scores against each other. They show that 33 of 43 of

the participants scored higher on their Raft quiz than on their Paxos quiz. Figure 7.3 overlays the

order in which participants learned the algorithms and took the quizzes, while Figure 7.4 overlays

participants’ prior Paxos exposure. Neither of these appear to be obviously correlated with which

participants scored higher on their Raft quiz.

Figure 7.5 shows the overall distribution of how participants scores differ across exams; this

makes it easier to compare the overall behavior of the data. The participants’ scored a median of

6.5 points or 31.7% higher on the Raft quiz than on the Paxos quiz. We conducted a paired samples t-

test with a one-sided hypothesis that participants Raft scores were generally greater than their Paxos

scores. This test found that individuals’ Raft scores (M = 25.73, SD = 10.56) were significantly

greater than their Paxos scores (M = 20.79, SD = 8.64); t(42) = 3.39, p = 0.001. In layman’s terms,

we can say with 99.9% confidence from our sample that similar individuals will score greater on

their Raft quiz than on their Paxos quiz (there is only a 0.1% chance that we would find such a

difference by random chance in identical distributions).

We were also curious whether the order in which students learned the systems affected their quiz

scores. Figure 7.6 shows participants’ quiz scores grouped by whether they took the Raft quiz first or

second. It appears from the figure that the participants who took the Raft quiz first scored about five

points higher on the Raft quiz than those who took the Paxos quiz first. To investigate this effect, we

used statistical tests to determine whether the scores in the two groups truly differed for the same

CHAPTER 7. RAFT USER STUDY 94

Figure 7.3: A scatter plot of 43 participants’ grades comparing their performance on each
quiz. Points above the diagonal (33) represent participants who scored higher on the Raft quiz.
The shape and color of each point represent whether that particular participant watched the
Raft lecture and took the Raft quiz first or whether he/she watched the Paxos lecture and took
the Paxos quiz first. Figure 7.4 is a similar scatter plot which shows participants’ prior Paxos
exposure instead.

CHAPTER 7. RAFT USER STUDY 95

Figure 7.4: A scatter plot of 43 participants’ grades comparing their performance on each quiz,
showing the participants’ prior Paxos exposure. The shape and color of each point represent the
prior Paxos exposure that participant reported in the survey (the exact question can be found in
Appendix A.3). One participant did not respond to the question (labeled “N/A”). No students
reported prior Raft exposure. Figure 7.3 is a similar scatter plot which shows the order in which
participants took the quizzes instead.

CHAPTER 7. RAFT USER STUDY 96

Figure 7.5: CDF of 43 participants’ Raft scores compared to their Paxos scores. The left graph
shows participants’ relative score difference between the quizzes (an x -value of 2 means the
participant’s score on the Raft quiz was twice their score on the Paxos quiz). The right graph
shows the participants’ absolute score difference between the quizzes (positive values represent
participants who scored higher on Raft).

CHAPTER 7. RAFT USER STUDY 97

Figure 7.6: Ordering effects on participants’ quiz scores.
The boxplots summarize the participants’ quiz score distributions. The top of each line is the
maximum score attained, the top of each box is the 75th percentile, the middle of each box is
the median, the bottom of each box is the 25th percentile, and the bottom of each line is the
minimum score attained.
Dashed lines connect the quantiles on boxplots for the same quiz between different ordering
groups. For example, the thick, dashed, blue line connects the median score for the Raft quiz
in the group that took the Raft quiz first (left) to the median score for the Raft quiz in the group
that took the Raft quiz second (right). If the ordering of the quizzes did not affect participants’
performance, these dashed lines would be nearly horizontal.
Participants’ individual quiz scores overlay each boxplot to provide further detail. Each point’s
x coordinate is randomly offset to reduce overlap.

CHAPTER 7. RAFT USER STUDY 98

quiz: we conducted unpaired t-tests with two-sided hypotheses that the groups differed in either

direction. These showed no statistically significant differences between the groups; such a difference

for Raft could occur by random chance in 16.8% of similar experiments. However, ordering does

appear to be a statistically significant factor when also considering prior Paxos experience; this is

discussed next as a component of a linear regression model.

We created a linear regression model to investigate the effects of various factors on quiz scores.

The model considered whether the participants were taking their first or second quiz, their prior

Paxos experience, and their school. To test whether ordering and prior Paxos experience affected

the Raft or Paxos quizzes differently, the linear model included two variables for each of those.

Thus, the model included the following variables:

• Quiz: Paxos or Raft.

• Second quiz, Raft: the participant took the Paxos quiz before the Raft quiz, and Quiz is Raft.

• Second quiz, Paxos: the participant took the Raft quiz before the Paxos quiz, and Quiz is

Paxos.

• Prior Paxos experience, Raft: the participant’s prior Paxos experience if the Quiz is Raft, 0

otherwise. In order to include this factor in the model, participants’ prior Paxos experience

was mapped from the English answer labels found in Appendix A.3 to integers between 0 and

4.

• Prior Paxos experience, Paxos: the participant’s prior Paxos experience if the Quiz is Paxos,

0 otherwise.

• School: Stanford or Berkeley.

Our first model (Table 7.3) reported that the School factor was insignificant, so we created a

second model that excludes it. The second model, shown in Table 7.4, explains 19% of the variance

in quiz scores; the other 81% at least includes individual differences in learning and test-taking

abilities. Accounting for ordering, this model predicts quiz scores that are 12.5 points higher on the

Raft quiz than on the Paxos quiz for students with no prior Paxos experience.

The linear model also predicts higher scores on both quizzes for people who learn Raft before

Paxos (6.3 points on the Raft quiz and 3.6 points on the Paxos quiz). This difference is statistically

significant for the Raft quiz (p = 0.031) but not for the Paxos quiz (p = 0.209). We speculate that

learning Paxos first may have confused or discouraged our participants enough that they then per-

formed worse on the Raft quiz.

Figure 7.7 shows distributions of quiz scores broken down by question difficulty. There were

only 4 points of Easy questions, so we combined those with the Medium category in the graphs.

CHAPTER 7. RAFT USER STUDY 99

variable estimate std. error t-value p-value

Intercept 10.61 3.32 3.19 0.002
Quiz is Raft 12.99 4.46 2.92 0.005
Second quiz, Raft −6.74 2.87 −2.35 0.021
Second quiz, Paxos 4.09 2.87 1.42 0.158
Prior Paxos experience, Paxos 4.65 1.54 3.02 0.003
Prior Paxos experience, Raft 3.11 1.54 2.02 0.046
School is Berkeley 3.26 2.28 1.43 0.157

Table 7.3: Linear model of quiz grades, including school factor. This model is statistically sig-
nificant (F(6,77) = 4.48, p = 0.001). It explains 20% of the variance in quiz scores (adjusted
R2 = 0.20).
The “Intercept” represents a constant number of points predicted as a baseline for every partici-
pant. The value of each variable is multiplied by its coefficient in the “Estimate” column; these
are summed to form the predicted quiz score. For example, a Berkeley student taking her Raft
quiz after having taken her Paxos quiz, with no prior Paxos experience, would be expected to
receive a quiz score of 10.61+12.99(1)−6.74(1)+4.09(0)+4.65(0)+3.11(0)+3.26(1) =
20.12. The “p-value” represents the probability that each variable’s co-efficient does not signif-
icantly differ from 0; normally p-values below 0.05 are considered statistically significant. The
“Std. Error” and “t-value” columns are used to calculate the p-values.
Two variables in this model are not statistically significant: “Second Quiz, Paxos” and “School
is Berkeley”. In refining this model to arrive at Table 7.4, we kept the “Second Quiz, Paxos”
variable because it is symmetric with the “Second Quiz, Raft” variable, which is significant.
However, we dropped the “School is Berkeley” variable.

variable estimate std. error t-value p-value

Intercept 11.27 3.31 3.40 0.001
Quiz is Raft 12.54 4.74 2.80 0.006
Second quiz, Raft −6.30 2.87 −2.19 0.031
Second quiz, Paxos 3.64 2.87 1.27 0.209
Prior Paxos experience, Paxos 4.88 1.54 3.18 0.002
Prior Paxos experience, Raft 3.35 1.54 2.18 0.032

Table 7.4: Linear model of quiz grades, excluding school factor. This model is statistically
significant (F(5,78) = 4.90, p = 0.0006). It explains 19% of the variance in quiz scores (adjusted
R2 = 0.19).

CHAPTER 7. RAFT USER STUDY 100

Figure 7.7: CDFs of 43 participants’ quiz scores, broken down by question difficulty and
ordering. Each curve shows the fraction of participants who scored up to that many points
(right/lower is better). The total, (all) graph is identical to Figure 7.2.
Difficulty: The easy/medium column shows the participants’ scores for the easy and medium
questions on the quiz, out of a maximum possible 30 points. The hard column shows the par-
ticipants’ scores for the hard questions on the quiz, out of a maximum possible 30 points. The
total column shows the participants’ total scores, out of a possible 60 points. Figure 7.8 breaks
this down by individual question.
Ordering: The Raft, then Paxos row shows the scores for the participants who took the Raft
quiz before taking the Paxos quiz. The Paxos, then Raft row shows the scores for the participants
who took the Paxos quiz before taking the Raft quiz. The (all) column shows the scores for all
participants who took both quizzes.

CHAPTER 7. RAFT USER STUDY 101

The graphs show that almost all of the difference in scores can be attributed to questions in the

Easy/Medium category, and the Hard category accounted for only a very small difference in scores.

We made the hard questions too difficult: on average, participants scored only about one quarter

of the possible points in the Hard category (7.45 points on average on Paxos and 7.94 points on

average on Raft). Thus, we were unable to measure much difference between participants in the

Hard category.

Figure 7.8 breaks the quiz scores down by individual question. Question 1 was Easy difficulty,

Questions 2 through 5 were Medium difficulty, and Questions 6 through 8 were Hard difficulty,

based on our categorization. There do not appear to be any individual questions in the Medium

category that alone account for large differences. Although we tried to pair question difficulty across

quizzes (for example, Q3 on the Raft quiz should be about as difficult as Q3 on the Paxos quiz),

they are mostly different questions that are hard to compare directly.

7.4.2 Survey

Participants answered three groups of survey questions after taking their second quiz. The questions

asked about their prior experience with Paxos and Raft, whether they felt the lectures or quizzes

were biased, and which algorithm they felt would be easier to implement or explain. Participants

were also asked for open-ended comments or feedback. The full survey and exact questions can be

found in Appendix A.3, along with the open-ended comments and feedback.

Many of the Berkeley participants and some of the Stanford participants had prior exposure to

Paxos; Figure 7.9 shows their responses to the survey question. At Stanford, 9 of the 31 participants

who responded to the question had at least some prior exposure to Paxos. At Berkeley, 6 of the 11

participants who responded to the question had at least some prior exposure to Paxos. No partici-

pants reported any prior exposure to Raft (41 participants responded to this question); Raft was still

new at the time, so this was expected.

Participants were also asked whether they felt the lectures were of similar quality and whether

the quizzes were of similar difficulty; Figure 7.10 shows their responses. 23 of 42 participants

responded that the Raft lecture was at least somewhat better than the Paxos lecture, and 20 of

42 participants responded that the Paxos quiz was at least somewhat harder than the Raft quiz.

However, these responses may be unreliable: it may have been difficult for participants to separate

the intrinsic difficulty of the material or their level of understanding from the lecture quality, or their

performance from the quiz difficulty. Therefore, we do not consider this strong evidence against the

integrity of our study.

CHAPTER 7. RAFT USER STUDY 102

Figure 7.8: CDFs of participants’ scores on individual questions.
Each graph in the figure shows the quiz scores for an individual quiz question. The top row of
graphs shows Paxos quiz questions; the bottom row shows Raft quiz questions. The number
above each graph is the number of the question (multi-part questions have been aggregated to
save space).
The curve in each graph shows a CDF of the data. The y axis is the cumulative fraction of
participants who scored up to a given number of points (right/lower is better).
The range of the x axis on each graph corresponds to the point values possible for each question,
and one point has the same width in every graph. For example, the graph for a 10-point question
is twice as wide as the graph for a 5-point question.
Each graph is also colored to provide summary information at a glance. Each quantile of the
data is shaded in a different color, as shown in the legend. Because each graph’s width is
scaled to its point value, the size (area) of the shading is proportional to the number of points it
represents.

CHAPTER 7. RAFT USER STUDY 103

Figure 7.9: Prior Paxos experience survey. Using a five-point scale, participants were asked
how much prior exposure they had to Paxos; 42 participants responded to the question. The
top graph shows the responses from the Stanford participants, the middle graph shows the
responses from the Berkeley participants, and the bottom graph shows the total responses (from
all participants).

CHAPTER 7. RAFT USER STUDY 104

Figure 7.10: Fairness survey. Using a five-point scale, participants were asked which lecture
was better and which quiz was more difficult. 42 participants responded to each question.
Left: Do you think the video lectures were roughly equal in quality, given the nature of the
material being presented?
Right: Do you think the quizzes were roughly equal in terms of testing your understanding of
the material?
The top graphs show the responses from the Stanford participants, the middle graphs show the
responses from the Berkeley participants, and the bottom graphs show the total responses (from
all participants).

CHAPTER 7. RAFT USER STUDY 105

Figure 7.11: Preferences survey. Using a five-point scale, participants were asked which al-
gorithm would be easier to implement and which would be easier to explain. 41 participants
responded to each question.
Left: Suppose you were working at a company and it is your job to implement a replicated state
machine. Which algorithm would be easier to implement in a functioning, correct, and efficient
system?
Right: Suppose you had to explain either Raft or Paxos to a CS graduate student who hadn’t
seen either one previously. Which would be easier to explain?
The top graphs show the responses from the Stanford participants, the middle graphs show the
responses from the Berkeley participants, and the bottom graphs show the total responses (from
all participants).

CHAPTER 7. RAFT USER STUDY 106

Figure 7.11 shows which algorithms participants felt would be easier to implement or explain.

An overwhelming majority of participants preferred Raft for each: 33 of 41 participants reported

that Raft would be at least somewhat easier to implement, and 33 of 41 participants reported that

Raft would be at least somewhat easier to explain. However, these self-reported feelings may be less

reliable than participants’ quiz scores, and participants may have been biased by knowledge of our

hypothesis that Raft is easier to understand.

7.5 Discussion about the experimental approach

Initially, we doubted that a user study would be feasible or convincing, but we felt it was the most

appropriate way to evaluate Raft’s claim of understandability. Thus, we conducted the user study to

provide empirical evidence that Raft is easier to understand than Paxos. Although we consider the

study itself successful, it was not particularly well-received by the system community. This section

explores whether the study was worth the time and effort we put into it and sheds light into whether

this sort of experiment is effective in the systems community.

In our first paper submission on Raft (in 2012), we claimed the Raft algorithm was easier to

understand than Paxos, but we had essentially no objective evidence for this. Our anonymous re-

viewers rightly pointed out this weakness. Excerpts from their reviews serve as evidence that with

no evaluation, our claim of understandability was weak:

• It’s not clear Raft is any more understandable than Paxos. While understandability is the key

claim to novelty, this claim was not actually evaluated, and may be untrue. . . . I think one

thing that would have helped a lot is if the authors chose a concrete “metric of success” and

evaluated their system according to that metric. . . . I do like the idea of using understandabil-

ity as a metric, but that [sic] there was no attempt at all to actually characterize Raft using

that metric.

• . . . I understood the algorithm. So, perhaps that speaks to the fact that Raft is indeed under-

standable.

That said, I do think that you [need] a way to show that Raft is indeed more understandable.

A couple of thoughts on doing that:

– Compare implementations of Raft and Paxos using some code complexity measures.

– Explain Raft and Paxos to students, and see which one they understand better. A test

of understanding could be writing the pseudocode, a quiz on algorithm behavior, or

CHAPTER 7. RAFT USER STUDY 107

extending the algorithm to do something different.

• We encourage the authors to define metrics for “understandability” and systematically ex-

plore whether the protocol meets these goals. . . .

Based of this feedback, we conducted the Raft user study and included its results in our second

paper submission. Unfortunately, the study did not seem to convince most of our reviewers; they

did not seem to find much value in it. Several did not even mention it in their reviews. Others were

concerned about the lecture content and quiz questions, even though we referred our readers to the

user study lectures and quizzes online. The paper was ultimately accepted (in 2014) after several

attempts, but we feel this was despite the reviewers’ generally negative opinions of the study. The

following excerpts summarize the reviewers’ opinions about the user study:

• The user study is not that useful.

• The evaluation is thin. Its qualitative thesis (Raft is simpler⇒ Raft is more understandable⇒
Raft implementations are more correct) is poorly supported, and hence subject to the reader’s

counter intuition. . . . This paper’s evaluation hinges on the user study. Did the tests test the

corner cases? Did the students have to prove either system correct, formally?

• I’m disappointed that Section 7 [Clients and log compaction] is empty! Given a choice, I’d

rather omit Section 8 [Implementation and evaluation] and include Section 7.

• The user study is a nice idea, but ultimately I don’t think it adds much to the paper. Readers

will decide for themselves if the algorithm is understandable or not and the paper’s ultimate

impact will depend on this judgement, not a user study.

• The user study is interesting.

Unclear whether explaining Paxos more clearly would change the results of the user study.

• Reasonable user study about “understandability”.

User study, while laudable, seems fairly unscientific in the end due to potential large sources

of bias.

I appreciate the author’s attempts to better characterize whether Raft is indeed “more un-

derstandable” than Paxos, and care was put into designing the study (e.g., splitting users,

presenting them with tests is different orders, etc.). Even so, if our goal is really randomized

CHAPTER 7. RAFT USER STUDY 108

trials, the fact that the experimenters wrote the explanations of the two protocols gives me

some real pause about some pretty overt bias that could slip into the writeup.

• User study is fresh and interesting (albeit bias factors are present).

The user study is interesting and thought provoking, but it really lacks representativeness both

in terms of sample sizes as well as neutrality.

• I think the understandability study is interesting, but perhaps a little bit of overkill. Typically

researchers can compare two protocols and see for themselves which is simpler . . . But I’m not

against a little overkill now and then. However, summarizing a study with a statement such as

“students were able to answer questions about Raft 23% better than questions about Paxos”

raises immediate questions about whether such figure is very meaningful. In particular 23%

seems like a precise figure, but in fact depends a lot on how the tutorials and the test are set up

(even when strong measures are taken to ensure fairness, as you have done). Two issues that

come to mind are that you can’t ask exactly the same questions about two different protocols,

and even if you could, it’s not clear which questions would be the right or fair questions to

ask to get at the issue of understandability.

• The user study based on self-reported understandability scores and correctness of answering

problem questions is not particularly convincing. It would be more convincing if students were

made to implement both Paxos and Raft in code, and then compare objectively the time taken,

the lines of code, and the overall correctness.

Concrete suggestion: Please provide some objective measure on understandability, even if it

is for a small sample-set of students that implement both Paxos and Raft from just communi-

cation primitives.

• I found the sample size in the section on understandability to be small enough to be worrisome

in spite of the good t-test number. A better test might be the number of unaccounted for failure

modes in naı̈ve implementations. I expect Raft to win by a wide margin.

• Furthermore, a review of the teaching materials in [88] seems to indicate flaws in the way

the “Understandability study” was performed. Some implementations of Multi-Paxos support

concurrent proposals which are ordered by the leader. However, it is unclear how Raft does

the same. From the description in the paper, I think Raft handles Append entries (performing

Append RPCs) sequentially. So, aren’t you comparing the understandability of 2 algorithms

with different properties?

CHAPTER 7. RAFT USER STUDY 109

• I find the evaluation of using students’ feedback interesting. However, it’s hard to be convinced

of your conclusion if I don’t know what quizzes are being asked.

• The authors evaluation of the subjective claim of understandability was done valiantly in

section 8.1 [Understandability], bravo.

• We [reviewer and students] didn’t like the user study. It’s not necessary or convincing. Adding

more information to make it convincing would not be worth the space cost.

Moreover, conducting the Raft user study was inherently costly and risky in terms of time and

effort. Typically, systems papers evaluate their performance quantitatively through machine experi-

ments; such experiments have low cost and fast turnaround. This results in several attractive prop-

erties as compared to psychology experiments involving human subjects:

• Repeatability: Performance evaluations are typically easy and cheap to repeat. They are often

automated so that there is little room for experimenter error in repeating the experiment. On

the other hand, psychology experiments require much more human involvement in general,

making them more costly and more error-prone to repeat.

• Iteration: Easily repeatable experiments make it possible to change the system, its envi-

ronment, or the experiment based on experimental results. For example, a researcher might

discover a bug during performance evaluation, fix it, and rerun the experiments, at little or

no additional cost. This can be prohibitively costly in a psychology experiment, as it requires

restarting the entire study with a new group of participants.

• Incremental results: In a user study, almost all of the work must be done before seeing any

results, or even learning whether the basic idea makes sense. This makes such experiments

much riskier than performance evaluations, where initial coarse-grained results are often at-

tainable with little effort.

On the other hand, novel approaches can bring some of these properties to human subjects

psychology experiments. For example in one study, Dow et al. [24] compare ad impressions using

web analytics. This is objective, repeatable, allows iteration, and is incremental. Similar techniques

may apply to evaluating understandability in some domains. Massive open online courses (MOOCs)

may also be a useful experimental platform for understandability by providing researchers with

pools of thousands of students to teach and evaluate.

CHAPTER 7. RAFT USER STUDY 110

Despite reviewers’ concerns, we consider the user study to be an essential part of this work.

Its results are the only objective evidence we have that Raft is easier to understand than Paxos.

The results assume that the study’s lectures are of equal quality and that its quizzes are of equal

difficulty. Though we have no way to prove this, the methods aimed to produce equivalent lectures

and quizzes, and the materials are available for readers to review. Under this assumption, the results

should be convincing, even to skeptical readers.

7.6 Conclusion

The Raft user study compared Raft’s understandability to that of Paxos. The study showed that after

learning Paxos or Raft for an hour, students are able to answer equally difficult questions about Raft

better than they can about Paxos. We believe we countered all major sources of bias in our study,

and the study showed the major result we wanted. However, it took significant time and effort. We

hope future techniques, such as leveraging online courses, allow studies to achieve similar results at

a lower cost.

The Raft user study was unconventional for systems research, which tends to focus on machine-

based performance evaluations. Our study provides substantial evidence in favor of Raft’s under-

standability, and as far as we know, it is the first study to objectively evaluate consensus algorithms

based on teaching and learning. We believe the systems community should carefully consider such

studies, as they enable us to advance our collective knowledge through novel kinds of contributions

that we could not otherwise convincingly evaluate.

Chapter 8

Correctness

Since the purpose of consensus is to maintain consistency across a replicated state machine, correct-

ness is a key concern. Not only must the algorithm itself be correct, but others must also be able to

implement it correctly in real systems. We took a pragmatic approach to correctness in Raft, build-

ing a foundation through understanding and intuition, then applying formal methods to the degree

they were practical.

To establish the correctness of Raft itself, we developed a formal specification for the basic Raft

algorithm and a proof of its safety. These are described in Section 8.1 and can be found in full

in Appendix B. Although many other components are needed for a complete system (specifically,

membership changes, log compaction, and client interaction), this is an important step towards

proving Raft correct. Section 8.2 discusses other methods we tried before arriving at the current

proof.

Our goal is for others to be able to build correct systems using Raft, and Section 8.3 describes

approaches to doing so. We hypothesize that systems builders will have an easier time developing

correct implementations if they fully understand Raft; this is another reason why understandability is

so important. We have tried to be clear and precise in describing Raft, but one problem with natural

languages is that they can easily be imprecise or ambiguous. Thus, we encourage system builders

to compare their understanding with Raft’s formal specification, which is completely precise using

mathematical language.

111

CHAPTER 8. CORRECTNESS 112

8.1 Formal specification and proof for basic Raft algorithm

We have developed a formal specification and a proof of safety for the consensus mechanism de-

scribed in Chapter 3; these can be found in Appendix B. The formal specification makes the infor-

mation summarized in Figure 3.1 completely precise using the TLA+ specification language [50]. It

is about 450 lines long and serves as the subject of the proof. It is also useful on its own for anyone

implementing Raft.

The formal specification defines the state in a complete Raft cluster with an arbitrary number

of servers. It defines an initial state (Init) in which all the servers’ logs are empty and defines all

possible transitions from one state to another (Next). There are several such transitions: the network

may duplicate or drop a message, and a server may (under the right conditions) receive a message,

timeout, restart, become a leader, advance its commit index, receive a request from a client, send

a RequestVote request, or send an AppendEntries request. Each transition includes the conditions

under which it may occur. For example, a server may only request a vote if it is in the candidate

state.

The specification models an asynchronous system (it has no notion of time) with the following

assumptions:

• Messages may take an arbitrary number of steps (transitions) to arrive at a server. Sending

a message enables a transition to occur (the receipt of the message) but with no particular

timeliness.

• Servers fail by stopping and may later restart from stable storage on disk.

• The network may reorder, drop, and duplicate messages.

The formal specification is slightly more general than the Raft algorithm presented in Chapter 3.

These differences make the formal specification applicable to a wider range of implementations

and also make some of its state transitions more orthogonal, which simplifies the proof. One way

in which the formal specification differs from the algorithm’s description is that it uses message-

passing rather than RPC. This requires a minor change to the AppendEntries response format, but

it eliminates the need to pair responses with requests. The specification also takes more transitions

than most implementations would to arrive at the same end state. Since each transition is evaluated

atomically, this models smaller atomic regions in an implementation. There are several examples of

this:

CHAPTER 8. CORRECTNESS 113

• When a server times out, it does not grant itself a vote in the same step. Instead, it requests its

own vote with an asynchronous RequestVote request message. Also, after a candidate receives

its final vote, it becomes leader in a separate transition.

• Leaders do not advance their commit index upon receiving an AppendEntries reply. Instead,

they do so in a separate transition. This improves orthogonality, since a leader that forms a

single-server cluster can also increase its commit index through the same transition.

• On receiving an AppendEntries request, a server either returns to the follower state, truncates

just the last entry from the end of its log, appends just one entry to the end of its log, or replies

in one atomic step (it can then continue to process the request in further steps). Reducing this

atomic region to just one entry at a time turns out to be important for implementations that

write to persistent storage. For example, when entries span multiple files, most file systems

would not allow truncating all of the entries atomically. The specification shows that imple-

mentations may safely truncate the entries back to front, one or more at a time.

• Servers update their current terms and states upon receiving a message with a larger term,

then in a different transition they process the message.

On the other hand, the specification is not as general as possible; that would harm its understand-

ability. For example, some transitions set two variables even when they need not be set atomically.

The proof verifies the State Machine Safety property. It is complete (it relies on the specification

alone) and relatively precise (it is about 3,500 words long). The main idea of the proof is summarized

in Section 3.6.3. Most of the lemmas (subproofs) show that an invariant holds for all states that are

reachable from the initial state in an execution. Using induction, they assume the invariant holds in

one state and show that it holds in every possible next state.

It is often necessary in the proof to refer to variables from prior states in the execution. To make

this precise, the specification is augmented with history variables; these variables carry information

about past events forward to states that follow. For example, one history variable called elections

maintains a record of every successful election in the execution, including the complete log of each

server at the time it cast its vote and the complete log of the new leader. The history variables are

never read in the specification and would not exist at all in a real implementation; they are only

“accessed” in the proof.

CHAPTER 8. CORRECTNESS 114

8.2 Discussion of prior verification attempts

Prior to arriving at the current proof, we tried three other approaches:

1. We first checked an earlier version of Raft in the Murphi model checker [23], which explores

the complete state space to check for unsafe conditions. The state space quickly expanded to

the point where Murphi could not finish (in a reasonable amount of time), so we had to limit

the size of the system to at most four entries in each log, four terms, and five servers. Murphi

found one bug in an early version of Raft, which caused log inconsistencies when multiple

leaders in a row crashed after incompletely committing log entries. It also missed an important

bug in an early version of Raft, where the commitment rule did not account for scenarios like

that of Figure 3.7. Murphi most likely missed this bug because of the constrained model size

(fortunately, David Mazières found it).

2. We attempted to use the TLA model checker on our specification. We found bugs in creating

the specification this way but abandoned this approach because it did not scale well to larger

models.

3. We also attempted to use the TLA proof system [21], which introduces a hierarchical lan-

guage for formally proving properties on TLA specifications and includes a machine checker

for such proofs. We mechanically proved the Leader Completeness Property using the TLA

proof system, but this proof relied on invariants that have not been mechanically checked (for

example, we did not prove the type safety of the specification). Unfortunately, we found it too

tedious and time-consuming to use the TLA proof system at the scale of a complete proof.

One problem is that TLA is untyped, making it more general but also more tedious [59].

We found the tools for correctness to be limited in various ways. In our experience, model

checking was orders of magnitude easier than developing a proof. It essentially requires writing

a simplified Raft implementation, and then it can be executed and debugged even easier than a

distributed system (model checkers output a full execution trace when any problems occur). Unfor-

tunately, we were not able to verify our models with large enough parameters to be fully convinced

of their correctness.

On the other hand, the Raft proof took about six weeks of learning and thinking before any

significant progress was made. Creating a proof takes a different skill set from programming and a

different sort of creativity. The end result has helped build our confidence in Raft’s safety, but the

proof might have bugs. At the scale of the complete Raft specification, only a mechanically checked

CHAPTER 8. CORRECTNESS 115

proof could definitively be bug-free. We think a machine-checked proof for Raft would be feasible

with more capable tools (e.g, Coq [7]), and one has recently been created for Multi-Paxos [101].

However, the time investment required would probably be on the order of several months.

8.3 Building correct implementations

There are many possible approaches to building a correct implementation of Raft. The safest ap-

proach is to generate an implementation automatically from a proven Raft specification. If the tools

are correct, this guarantees that there will be no errors in converting the specification to an imple-

mentation. Recent work has shown this to be feasible for Multi-Paxos [101], and we expect it to

be for Raft as well. However, this approach has not been very popular in practice so far, perhaps

because real-world systems have additional needs, such as performance, that are harder to accom-

modate in the generated code.

Without generating an implementation, implementers should strive to design their implementa-

tions to reduce the possibility of creating bugs, and they should test their implementations to reduce

the possibility of encountering bugs in production. The remainder of this section discusses several

approaches we think may be effective, though we have not evaluated their effectiveness. Readers

may also be interested in the testing strategy used for Chubby [15].

Howard describes a nice design for building ocaml-raft correctly [37, 36]. It collects all the Raft

state transitions in one module, while all code for determining when transitions should occur is

elsewhere. Each transition checks its pre-conditions using assertions and has no system-level code

intermixed, so the code resembles the core of the Raft specification. Because all of the code that

manipulates the state variables is collected in one place, it is easier to verify that state variables

transition in restricted ways. A separate module invokes the transitions at the appropriate times.

Moreover, ocaml-raft can simulate an entire cluster in a single process, which allows it to assert

Raft’s invariants across virtual servers during execution. For example, it can check that there is at

most one leader per term at runtime.

For end-to-end testing, Jepsen and Knossos are useful tools that have already found bugs in two

Raft implementations (in read-only request handling) [45]. Jepsen injects network partitions in a

distributed system and determines whether the system loses data. Knossos analyzes clients’ histo-

ries of operations against a distributed system to look for ways those histories are not linearizable.

Together, these can be used as powerful end-to-end tests for Raft systems.

Some of the most difficult to find bugs are those that only occur in unlikely circumstances such

CHAPTER 8. CORRECTNESS 116

as during leadership changes or partial network outages. Thus, testing should aim to increase the

likelihood of such events. There are three ways to do this.

First, Raft servers can be configured to encourage rare events for testing. For example, setting

the election timeout very low and the heartbeat interval very high will result in more leader changes.

Also, having servers take snapshots very frequently will result in more servers falling behind and

needing to receive a snapshot over the network.

Second, the environment can be manipulated to encourage rare events for testing. For example,

servers can be randomly restarted and cluster membership changes can be invoked frequently (or

continuously) to exercise those code paths. Starting other processes to contend for servers’ resources

may expose timing-related bugs, and the network can be manipulated in various ways to create

events that occur only rarely in production, such as:

• Randomly dropping messages (and varying the frequency of drops between servers and links);

• Adding random message delays;

• Randomly disabling and restoring network links; and

• Randomly partitioning the network.

Third, running the tests for a longer period of time will increase the chance of discovering a

rare problem. A larger number of machines can run tests in parallel. Moreover, entire clusters can

run as separate processes on a single server to reduce network latency, and disk overheads can be

reduced by persisting to RAM only (for example, with a RAM-based file system such as tmpfs [64]).

While not entirely realistic, these techniques can exercise the implementation aggressively in a much

shorter period of time.

8.4 Conclusion

We believe our evaluation of Raft’s correctness puts it at least on par with the algorithms used in

most Paxos-based systems. Theoreticians have typically proven the safety of only narrow specifi-

cations of Paxos, but practitioners deviate from these specifications and extend their systems sig-

nificantly. The formal specification for Raft is a nearly complete implementation of the basic Raft

algorithm presented in Chapter 3, so the fraction of a fully elaborated Raft algorithm that has been

proven safe is fairly large. We leave specifying and proving cluster membership, log compaction,

and client interaction to future work, along with liveness and availability properties of the basic Raft

algorithm.

Chapter 9

Leader election evaluation

This chapter analyzes the performance of leader election in Raft, which occurs when a leader fails

and needs to be replaced. Although we expect leader failures to be a rare event, they should be

handled in a timely manner. We would like Raft to reliably elect a new leader in a fraction of a

second in a typical deployment.

Unfortunately, it is difficult to put a bound on the time or number of messages leader election

will take. According to the FLP impossibility result [28], no fault-tolerant consensus protocol can

deterministically terminate in a purely asynchronous model. This manifests itself in split votes in

Raft, which can potentially impede progress repeatedly during leader election. Raft also makes use

of randomized timeouts during leader election, which makes its analysis probabilistic. Thus, we can

only say that leader election performs well with high likelihood, and even then only under various

assumptions. For example, servers must choose timeouts from a random distribution (they are not

somehow synchronized), clocks must proceed at about the same rates, and servers and networks

must be timely (or stopped). If these assumptions are not met for some period of time, the cluster

might not be able to elect a leader during that period (though safety will always be maintained).

This chapter draws the following conclusions about the performance of Raft’s leader election

algorithm:

• When no split vote occurs, elections complete about one third of the way into the election

timeout range, on average. They complete slightly faster in clusters with more available

servers, since the first server is expected to time out sooner. (Section 9.1)

• Split vote rates are low when the election timeout range is sufficiently broad. We recommend

a range that is 10–20 times the one-way network latency, which keeps split votes rates under

117

CHAPTER 9. LEADER ELECTION EVALUATION 118

40% in all cases for reasonably sized clusters, and typically results in much lower rates.

Clusters will experience more split votes as more servers fail, since fewer votes are available.

(Section 9.2)

• The number of election terms required to elect a leader follows a geometric distribution,

where the expected number is
1

1− split vote rate
. Thus, even a high split vote rate of 50%

will only need two election terms on average to elect a leader. A cluster configured with an

election timeout that is 10–20 times its one-way network latency will be able to elect a leader

in less than 20 times its one-way network latency on average. (Section 9.3)

• Leader election performs well in practice in both local and wide area networks. In a real-

world LAN, our system was able to elect a leader in an average of 35 ms when configured

with aggressive timeouts, though we suggest using a more conservative timeout range in

practice. On a simulated WAN spanning the US, elections typically complete in half a second,

and 99.9% of elections complete in 3 seconds, even when two of five servers have failed.

(Section 9.4)

• The performance of leader election is not substantially affected by the log comparison in

RequestVote RPCs, when some servers will not grant their votes to others. (Section 9.5)

• The basic leader election algorithm can cause disruptions if followers lose connectivity, incre-

ment their terms, and then regain connectivity. Section 9.6 extends the basic algorithm with

an additional phase to avoid such disruptions.

9.1 How fast will Raft elect a leader with no split votes?

The most common case for leader election in Raft is when no split vote occurs, and this section

analyzes how long it takes to elect a leader under that assumption. This is expected to be the normal

case for Raft clusters; if the cluster is configured correctly, most normal elections will not encounter

a split vote. The first server to time out will be able to collect votes from a majority of the cluster

and become leader. The timeline of events is shown in Figure 9.1.

With no split votes, the time it takes to elect a leader is determined by how long it takes the first

server to time out. The question of when it will time out is illustrated in Figure 9.2. Each server waits

for a uniform random timeout after the last time it received a heartbeat. Intuitively, any individual

server is expected to time out halfway through the election timeout range, but with more servers it

becomes more likely that the first server will time out sooner.

CHAPTER 9. LEADER ELECTION EVALUATION 119

Figure 9.1: Timeline of a typical election when no split vote occurs. The first candidate to
time out successfully collects votes and completes the election (other elections may not be so
fortunate). The figure is drawn to scale assuming the election timeouts are chosen from a range
between 10–20 times the cluster’s one-way network latency.
The “old leader heartbeats” row shows the final heartbeat that the old leader completes, and
when it would have sent its next heartbeats were it not to crash.
The “old leader crash” row shows the interval during which the old leader crashes. This time is
assumed to follow a uniform random distribution within its heartbeat interval. The vertical line
halfway through the interval is its expected (average) value.
The “base election timeout” row shows the interval during which all the followers await addi-
tional heartbeats from the old leader.
The “election timeout range” row shows the interval during which the servers would time out
and start elections to replace the old leader. The vertical lines show expected earliest timeout
values for different numbers of remaining servers (eight, four, and two, respectively).
The “requests for votes” row shows when the candidate sends its RequestVote RPCs to the
other servers and receives their votes.
The “new leader heartbeats” row shows the new leader sending out heartbeat RPCs right away
after becoming leader, then periodically thereafter.

Figure 9.2: What is the smallest random election timeout value chosen by s servers? The
diagram shows random election timeouts a five-server cluster where one server has failed (s =
4). t(1) is the smallest timeout value chosen.

CHAPTER 9. LEADER ELECTION EVALUATION 120

variable type meaning

s natural number of available servers
n natural size of full cluster (including unavailable servers)
c natural number of servers to time out near each other
l time constant half round trip network latency (special case of L)
L random variable of time half round trip network latency

W random variable of time time to write term and vote durably to disk
Ti random variable of time timeout of server i
Ms random variable of time earliest timeout of s servers
Dc,s random variable of time difference in timeouts of earliest c of s servers
Es random variable of time time to complete an election

Table 9.1: Summary of the variables used throughout this chapter to analyze leader election
performance. Times are normalized to the election timeout range (ranging from 0 to 1).

We now define the problem more precisely and derive when the first server times out ana-

lytically. The variables defined in this chapter are summarized in Table 9.1. Suppose each server

chooses its timeouts randomly from the standard uniform distribution (in the range [0,1]). Let

T1 . . .Ts be random variables representing when each of s servers times out. Let Ms be the mini-

mum of T1 . . .Ts , a random variable representing the time the first server times out. Its cumulative

distribution function (CDF) defines the probability that Ms is no greater than a particular time, t .

This is equivalent to one minus the probability that all servers times out after t :

Pr(Ms ≤ t) = 1−Pr(Ms > t)

= 1−
s

∏
i=1

Pr(Ti > t)

= 1−
s

∏
i=1

(1− t)

= 1− (1− t)s

For example, consider a cluster with five servers where the prior leader has failed. The probability

that the earliest of the remaining four servers times out sometime in the first quarter of the election

timeout range is Pr(M4 ≤ 1
4) = 1− (1− 1

4)
4 ≈ 0.68. The CDF is graphed in Figure 9.3 for various

values of s .

CHAPTER 9. LEADER ELECTION EVALUATION 121

Figure 9.3: The graph shows the probability that the earliest server times out before t when
different numbers of servers are available. The point on each line shows the time when the first
server is expected to time out (E[Ms]).

The probability density function (PDF) of Ms is the derivative of the CDF:

fMs (t) =
d

dt
Pr(Ms ≤ t)

=
d

dt
(1− (1− t)s)

=− d

dt
(1− t)s

= s(1− t)s−1

The expected value (mean) of Ms is calculated from the PDF:

E[Ms] =
∫ 1

0
t fMs (t)dt

=
∫ 1

0
t(s(1− t)s−1)dt

=−(1− t)s(s t +1)
s +1

∣∣∣∣1
t=0

=
1

s +1

CHAPTER 9. LEADER ELECTION EVALUATION 122

For example, with four available servers, the first timeout is expected to occur
1
5

th
of the way through

the election timeout range. Fortunately, this very simple expression is a good estimate of Raft’s

overall election performance, since elections complete soon after the first candidate times out when

no split vote occurs.

More precisely, if there is no split vote, the full election requires a candidate to time out and

request votes, once the leader crashes:

Es = baseline election timeout+Ms + time to request votes−heartbeat adjustment

Es = 1+Ms +2L+W −U (0,
1
2
)

E[Es] = 1+
1

s +1
+2E[L]+E[W]− 1

4

where election timeouts are chosen from the range [1,2], L is the network latency, and W is the

time to write the votes persistently to disk. A uniform random time value from the range [0,
1
2
] is

subtracted, since leaders are expected to crash randomly within their heartbeat intervals rather than

immediately after sending heartbeats.

9.2 How common are split votes?

The previous section analyzed the performance of normal elections when no split vote occurs. In

practice, two or more candidates may time out at similar times, leading to split votes. Split votes

cause additional election timeout delays, and if they occur too frequently, they can impact election

performance dramatically. This section first analyzes split votes under a simplifying assumption that

network latencies are constant, then subsequently relaxes this assumption.

Split vote rate with fixed latency

Split votes can be calculated more simply if network latencies are fixed. Let the constant l be the one-

way latency between any two servers in the cluster, measured as a fraction of the election timeout

range. Because of the fixed network latency, the first server to time out is guaranteed to get the votes

of all servers that don’t time out within l of it, and it will receive none of the votes of the other

servers, who will each vote for themselves. The probability of a split vote is thus the probability

that too many candidates time out within l of each other. For example, consider a five-server cluster

in which only four servers are available. As illustrated in Figure 9.4, if only two servers time out

CHAPTER 9. LEADER ELECTION EVALUATION 123

Figure 9.4: These examples show two similar elections in a five-server cluster when one server
has failed and network messages have a fixed latency. Each server’s random timeout value is
shown on the timelines, where t(1) is the smallest value chosen, t(2) is the second-smallest, and
so on. In the top election, the first server is able to collect votes from itself, the third server, and
the fourth server. However, in the bottom election, its RequestVote RPC cannot reach the third
server in time before that server times out; thus, the election ends in a split vote.

within l of each other, the earliest server will be able to collect votes from itself and the other two

servers and become leader. However, if three servers time out within l , then the earliest server will

only be able to reach one other server in time to receive its vote, so the vote is split.

To derive a general formula for when split votes occur, let c denote the number of servers that

time out within l of each other and let n be the size of the full cluster. The first server will get its

own vote plus votes from the s − c servers that time out at least l time after the first. Thus, a split

vote occurs when the following condition holds:

votes needed > votes available to earliest server⌊n

2

⌋
+1 > 1+(s− c)

c > s−
⌊n

2

⌋
How often split votes occur thus depends on how often at least c servers timeout within l of

each other. Let Dc,s = T(c)−T(1), where T(i) is a random variable representing the timeout of the

i -th of s servers in sorted order; Dc,s is the time after the first server times out that the cth server

times out. The probability of split votes is then Pr(Dc,s < l), where c is determined by the formula

given above (s−
⌊n

2

⌋
+1).

We now derive the CDF for Dc,s , denoted Pr(Dc,s ≤ l). Suppose the first server times out at t .

CHAPTER 9. LEADER ELECTION EVALUATION 124

First, if t < 1− l , each of the following servers times out within l time after t with probability
l

1− t
.

The probability that the second through cth servers time out within l time after t , and the remaining

s− c servers do not, is given by:(
s−1
c−1

)(
l

1− t

)c−1(1− t − l

1− t

)s−c

Instead, if t ≥ 1− l , then any server that times out after the first must time out within l time of t .

Thus, all s servers will time out within l of the first with probability 1, and the probability that any

server does not timeout within l of the first is 0. Putting this together, we can now derive the CDF:

Pr(Dc,s ≤ l) =

s

∑
k=c

∫ 1−l

0
Pr(exactly k servers time out in t to (t + l) range |Ms = t)fMs (t)dt +∫ 1

1−l
Pr(exactly k servers time out in t to (t + l) range |Ms = t)fMs (t)dt

=

s

∑
k=c

(∫ 1−l

0
Pr(exactly k servers time out in t to (t + l) range |Ms = t)fMs (t)dt

)
+

∫ 1

1−l
fMs (t)dt

=

s

∑
k=c

(∫ 1−l

0

(
s−1
k −1

)(
l

1− t

)k−1(1− t − l

1− t

)s−k
fMs (t)dt

)
+

∫ 1

1−l
fMs (t)dt

=

s

∑
k=c

(
s−1
k −1

)(∫ 1−l

0

(
l

1− t

)k−1(1− t − l

1− t

)s−k
s(1− t)s−1 dt

)
+

∫ 1

1−l
s(1− t)s−1 dt

=

s

∑
k=c

(
s−1
k −1

) (
− s

s− k +1
lk−1 (1− t − l)s−k+1

)∣∣∣∣1−l
t=0

+

(−(1− t)s)|1t=1−l

=

(s

∑
k=c

(
s−1
k −1

)
s

s− k +1
lk−1(1− l)s−k+1

)
+ l s

=

(s

∑
k=c

(s−1)!(s)
(k −1)!(s− k)!(s− k +1)

lk−1(1− l)s−k+1

)
+ l s

CHAPTER 9. LEADER ELECTION EVALUATION 125

=

(s

∑
k=c

s!
(k −1)!(s− k +1)!

lk−1(1− l)s−k+1

)
+ l s

=

(s

∑
k=c

(
s

k −1

)
lk−1(1− l)s−k+1

)
+ l s

=

 s−1

∑
k=c−1

(
s

k

)
lk (1− l)s−k

 + l s

=

s

∑
k=c−1

(
s

k

)
lk (1− l)s−k

(The CDF somewhat resembles a binomial distribution, which hints that there may exist an easier

derivation.)

For example, consider a five-server cluster with four available servers (s = 4). A split vote will

occur if the earliest three servers time out within l of each other (c = 3). If the election timeout

range is 100 ms, the earliest three servers will time out within l of each other, resulting in a split

vote:

• In about 0.06% of elections, if the one-way network latency is 1 ms, Pr(D3,4 ≤ .01);

• In about 5.2% of elections, if the one-way network latency is 10 ms, Pr(D3,4 ≤ .1); and

• In about 18.1% of elections, if the one-way network latency is 20 ms, Pr(D3,4 ≤ .2).

Figure 9.5 graphs the CDF formula for a range of cluster sizes. The first thing to observe is

that failures have a very large effect on split vote rates, especially if the cluster is down to a bare

majority of its original members. For example, a five-server cluster with l = 0.2 will encounter less

than 20% split votes after one failure; if the same cluster encounters a second failure, about half of

election terms will encounter split votes. To prepare for worst-case scenarios, the election timeout

range should be set to produce tolerable values when a bare majority of the cluster is available.

Second, larger clusters experience fewer split votes with the same number of failures, but they

experience an even larger worst-case split vote rate as a result of being able to tolerate more failures.

For example, a nine-server cluster with l = 0.2 will experience only about a 15% rate of split votes

after two failures (compare with 50% for a five-server cluster). However, when it is down to its bare

majority with four failures, the nine-server cluster will experience a nearly 70% split vote rate.

Third, keeping the number of available servers constant, larger full cluster sizes will have more

split votes. For example, with l = 0.2, a nine-server cluster with six available servers will experience

about a 35% rate split votes; a seven-server cluster with six available servers will experience only

CHAPTER 9. LEADER ELECTION EVALUATION 126

Figure 9.5: The graphs show the likelihood of split votes for various cluster sizes and numbers
of server failures, given a fixed network latency l . Each graph shows a different full cluster size,
and the curves on each graph show different numbers of failed servers in that cluster. Each value
represents the likelihood that a split vote will occur because the first c of the s servers timed
out within l of each other, where c is determined by s −

⌊n

2

⌋
+ 1. For example, a five-server

cluster with two failures and l = 0.2 will see about half of elections end in split votes.

CHAPTER 9. LEADER ELECTION EVALUATION 127

about a 10% rate split votes. This is because larger full clusters require more votes to win an election;

fewer candidates need to time out within l of each other in order to produce a split vote.

Finally, the graphs suggest that choosing an election timeout range of 10–20 times the one-way

network latency (so l = 0.1) will result in low split vote rates in all clusters, assuming network la-

tencies are nearly constant. With this setting, a nine-server cluster that has experienced four failures

will encounter 40% split votes, and most typical clusters will encounter much fewer. Smaller elec-

tion timeouts (larger l values) may also work in many deployments, but they should be tested more

carefully to make sure.

Split vote rate with variable latency

When network latency is variable, calculating split vote rates is more complicated. The problem is

that a RequestVote message sent by one server can overtake a RequestVote message sent earlier by

a different server. Thus, the first server to time out is no longer guaranteed to collect all of the votes

of servers that do not vote for themselves. The first server is still the most likely candidate to win,

by virtue of sending requests for votes first, but its advantage depends on how much earlier it timed

out. Thus, with variable latency, we intuitively expect somewhat higher rates of split votes (there is

more competition).

Rather than model this mathematically, we used a small simulation. Each run followed the

following steps (before optimization):

1. Assign random timeouts to each of s servers.

2. If a server has not voted by the time it times out, it votes for itself and schedules RequestVote

messages to be delivered to other servers after random latencies.

3. If any server collects a majority of votes, the election term is considered successful; otherwise,

it is considered a split vote.

After 10,000 runs, the fraction of split votes was calculated.

Figure 9.6 shows the split vote rates for messages with uniform random latencies in the range

[lmin, lmax], as calculated by the simulation. (Uniform random latencies may not be a realistic dis-

tribution, but they are the simplest case and can help with estimating more complex distributions.)

The overall conclusion from these graphs is the same as with fixed latency: more failures result in

significantly higher split vote rates.

CHAPTER 9. LEADER ELECTION EVALUATION 128

Figure 9.6: The contour graphs show split vote rates for various cluster sizes and numbers
of failed servers. Each narrow contour line denotes a 1% increase in the probability of split
votes; each medium contour line denotes a 10% increase; the thick contour line visible in some
graphs denotes the 50% barrier. Split votes are always 0% at the origin, where messages are
instantaneous. The points on the x axis, where the latency range is zero, correspond to the split
vote rates with fixed latencies in Figure 9.5.
For example, the probability of a split vote for a five-server cluster after one failure can be found
in the graph in the second column and second row. When latencies are chosen randomly and
uniformly between 0.1 and 0.2, the point with a minimum latency of 0.1 and a latency range of
0.1 reveals, by counting contour lines, that the split vote rate is about 16%. With two failures,
the probability of a split vote in the same cluster is nearly 40%.

CHAPTER 9. LEADER ELECTION EVALUATION 129

In clusters with only a bare majority of servers available (the bottom graph in each column),

the contour lines are very linear with a slope of about −2: they have about the same split vote rate

when keeping the average network latency constant. This indicates that the split vote rates for bare-

majority clusters can be accurately approximated with our fixed latency model using the average of

the variable latency range. For example in a nine-server cluster with four failures, a variable latency

chosen randomly from the range [0.1,0.2] results in a similar split vote rate as a fixed latency of

0.15.

In clusters with fewer failures, the contour lines aren’t always linear, and they typically have less

slope in general (they are flatter). For example, in a five-server cluster with no failures, a variable

latency between 0.1 and 0.2 has a similar split vote rate as a fixed latency of about 0.2 (the slope

of the contour lines is only about −1). Typically, split vote rates can be bounded with our fixed

latency model using the maximum of the variable latency range. This is true for about 78% of the

data points shown in the figure; however, this approximation works least well for large clusters with

few failures, as these contour lines are most curved.

9.3 How fast will Raft elect a leader when split votes are possible?

Given a split vote rate, we can estimate the total election time. Raft will elect a leader as soon as

an election term successfully completes without a split vote. When a split vote occurs, it’s likely

that all servers have reset their timers, since servers do this when they grant a vote (this isn’t quite

true when logs differ; see Section 9.5). Thus, the next election term has the same probability of

success as an entirely new election and will take just as long. In other words, each election term is

essentially memoryless, and the number of election terms required in an election can be modeled

as a geometric distribution, where the probability of success is the probability that a split vote does

not occur. Therefore, Raft elections are expected to complete in
1

1− split vote rate
election terms on

average.

If a split vote occurs in a particular election term, the election term takes about 1+Ms time units

plus a one-way network latency to reset the server’s election timers. We do not include the time for

the candidate to record its own vote on disk, since this time can be overlapped with the RequestVote

messages (with this optimization, the candidate may not count its own vote towards leadership until

the vote is durably recorded). After the vote is split, the cluster must wait another election timeout

before the next election term begins. This repeats for each split vote, then the time for an election

CHAPTER 9. LEADER ELECTION EVALUATION 130

with no split votes (from Section 9.1) is additional. Thus, the total time for an election, Es , is:

Es =
(

∑
split votes

time for split vote
)
+
(

time for election with no split vote
)

Es =
(

∑
split votes

(1+Ms +L)
)
+
(

1+Ms +2L+W −U (0,
1
2
)
)

E[Es] =
(
(

1
1− split vote rate

−1)× (1+
1

s +1
+E[L])

)
+
(

1+
1

s +1
+2E[L]+E[W]− 1

4

)
E[Es] =

1
1− split vote rate

×
(

1+
1

s +1
+E[L]

)
+E[L]+E[W]− 1

4

where L is the one-way network latency and W is the latency for a durable disk write.

Howard [37] suggests an optimization to decrease the time for an election after split votes occur.

The optimization separates followers’ timeouts from candidates’ timeouts, where candidates select

smaller timeouts from a distribution with a smaller range. This results in faster iterations once split

votes have occurred, though it risks additional split votes. The remainder of this chapter does not

use this optimization.

Figure 9.7 plots the expected time to elect a leader when the network latency is fixed, by com-

bining the formula for E[Es] with the formula for Pr(Dc,s ≤ l). From the graphs, a Raft cluster

with a sufficiently broad timeout range will usually elect a leader within 20 times the one-way net-

work latency, even when running with a bare majority of available servers. This suggests that most

datacenter Raft deployments should be able to achieve typical leader election times under 100 ms.

Even worst case global deployments, with one-way latencies of 200 ms, should be able to typically

elect leaders within 4 seconds. (Election times may be larger if some servers are deployed on other

planets.)

Each of the curves has a knee. If the timeout range is chosen to be too short, too many servers

time out before others are able to collect votes, resulting in poor election times. Once timeout ranges

are sufficiently large (about 3–8 times the network latency, depending on the cluster), the curves

become linear with a slight upward slope: elections complete after few or no split votes, but they

must wait longer for each timeout to elapse.

The graphs provide insight into how to configure election timeouts: a conservative setting is

probably best in practice. The minimum point on the graphs represents the best average election

time possible for each given cluster configuration. However, attaining this minimum time is quite

risky, since the minimum is close to the knee in the curve. If the network latency turns out to

be slightly higher than anticipated in practice, that might push the system into the left region of the

CHAPTER 9. LEADER ELECTION EVALUATION 131

Figure 9.7: The expected total election times for various clusters, as defined by E[Es], with a
fixed one-way network latency. It excludes the time to write to stable storage (which is usually
negligible). The timeout range and expected overall election time are presented as multiples of
the one-way network latency (l), since l is typically fixed in a given deployment.

CHAPTER 9. LEADER ELECTION EVALUATION 132

code LogCabin [86], written in C++11
OS x86-64 RHEL6 (Linux 2.6.32)

CPU Xeon X3470 (4 cores, 8 hyperthreads)
disk ext4 file system on Crucial M4 SSDs (1 SSD per server)

network Protocol Buffers [111] over TCP/IP over 1 gigabit Ethernet
configuration in-memory state machine, no log compaction

Table 9.2: Experimental setup for real-world LAN benchmark.

graph where election times skyrocket. It is better to configure systems farther to the right, trading off

a slightly higher average election time in exchange for a more robust system. Thus, we recommend

using a timeout range that is ten times the one-way network latency (even if the true network latency

is five times greater than anticipated, most clusters would still be able to elect a leader in a timely

manner).

9.4 How fast will the complete Raft algorithm elect a leader in real
networks?

The previous sections were based on simplified models of how leader election works in Raft. We

wanted to know how fast Raft will be able to elect a leader in the real world. To find out, this section

evaluates Raft’s leader election algorithm using a real-world benchmark in a LAN environment and

a realistic simulator in a slower WAN environment.

Real-world implementation on a LAN

We used LogCabin to measure the performance of Raft’s leader election algorithm on five servers

connected by a gigabit Ethernet network. The experimental setup is summarized in Table 9.2. The

benchmark repeatedly crashed the leader of a cluster of five servers and timed how long it took to

detect the crash and elect a new leader. The benchmark measured the time from when the old leader

crashed until the other servers received the new leader’s first heartbeat (see Figure 9.1). The leader

was crashed randomly within its heartbeat interval, which was half of the minimum election timeout

for all tests. Thus, the smallest possible downtime was about half of the minimum election timeout.

The benchmark tried to generate a worst-case scenario for leader election. First, it synchronized

the old leader’s heartbeat RPCs before causing the old leader to exit; this made the follower’s elec-

tion timers start at approximately the same time, leading to many split votes if the timeout values

CHAPTER 9. LEADER ELECTION EVALUATION 133

(a) Time to elect new leader when varying the range of randomness in election timeouts.

(b) Time to elect new leader when scaling the minimum election timeout.

Figure 9.8: The graphs show the time to detect and replace a crashed leader in the real-world
LAN benchmark. Each line represents 1,000 trials (except for 100 trials for “150–150 ms”)
and corresponds to a particular choice of election timeouts; for example, “150–155 ms” means
that election timeouts were chosen randomly and uniformly between 150 ms and 155 ms. The
steps that appear on the graphs show when split votes occur (the cluster must wait for another
election timeout before a leader can be elected). The measurements were taken on a cluster of
five servers with a broadcast time (network round trip plus disk write) of roughly 15 ms. Results
for a cluster of nine servers are similar.

CHAPTER 9. LEADER ELECTION EVALUATION 134

were not sufficiently randomized. Second, the servers in each trial had different log lengths, so two

of the four servers were not eligible to become leader (however, Section 9.5 will show that this has

only a minor effect on election times).

Figure 9.8(a) shows that elections complete in under one second when the timeout range is

sufficiently broad. A small amount of randomization in the election timeout is enough to avoid

split votes in elections. In the absence of randomness, leader election consistently took longer than

10 seconds due to many split votes. Adding just 5 ms of randomness helps significantly, resulting in

a median downtime of 287 ms. Using more randomness improves worst-case behavior: with a 50 ms

random range, the worst-case completion time (over 1,000 trials) was 513 ms.

Figure 9.8(b) shows that downtime can be reduced by reducing the election timeout. With an

election timeout of 12–24 ms, it takes only 35 ms on average to elect a leader (the longest trial

took 152 ms). However, lowering the timeouts beyond this point violates Raft’s timing requirement:

leaders have difficulty broadcasting heartbeats before other servers start new elections. This can

cause unnecessary leader changes and lower overall system availability. We recommend using a

conservative election timeout such as 150–300 ms; such timeouts are unlikely to cause unnecessary

leader changes, result in a low rate of split votes, and will still provide good availability.

Simulated WAN network

We developed a simulator called AvailSim [85] to explore a wider range of leader election scenarios.

Unlike the fixed network in our real-world test cluster, AvailSim allows the latency of the simulated

network to be configured arbitrarily. (We used AvailSim to interactively explore a wide space of

leader election scenarios and algorithms, but this chapter only includes a few relevant results.)

AvailSim is a close approximation to a complete Raft system, but its election time results differ

from real elections in two ways:

1. Each server in AvailSim begins with a fresh election timer. In practice, the leader will crash

at some random point in time between heartbeats. The election times produced by AvailSim

are thus an average of half a heartbeat interval too large.

2. AvailSim does not add any time for processing messages or writing to disk (these are infinitely

fast in the simulator). CPU time should be short relative to network latency, and disks need

not play a significant role in leader election anyhow (see Section 9.3).

We used AvailSim to approximate a WAN spanning the continental US. Each message was

assigned a latency chosen randomly from the uniform range of 30–40 ms, and the servers’ election

CHAPTER 9. LEADER ELECTION EVALUATION 135

Figure 9.9: Election performance as calculated by AvailSim for a WAN (one-way network la-
tency of 30–40 ms). The figure shows a cluster of five servers with zero, one, and two servers
having failed.
The left graph plots the CDFs of election times. The right graph plots the same curves on a
reverse-logarithmic y axis to magnify detail on the tail of the distribution. Each CDF summa-
rizes 10,000 simulated elections. The point on each curve marks the average election time.

Figure 9.10: Election performance as calculated by AvailSim when each server has a different
log (using the same WAN configuration as Figure 9.9). Performance is similar to Figure 9.9,
where the servers’ logs are all the same.

CHAPTER 9. LEADER ELECTION EVALUATION 136

timeout range was set accordingly to 300–600 ms (about 10–20 times the one-way network latency).

Figure 9.9 shows how quickly a five-server cluster elects a leader in this WAN environment.

When only one of the five servers has failed, the average election completes within about 475 ms,

and 99.9% of elections complete within 1.5 s. Even when two of the five servers have failed, the

average election takes about 650 ms (about 20 times the one-way network latency), and 99.9% of

elections complete in 3 s. We believe these election times are more than adequate for most WAN

deployments.

9.5 What happens when logs differ?

Most of this chapter has assumed that servers grant their votes on a purely first-come-first-served

basis. In reality, Raft restricts how servers may grant votes: the RequestVote RPC contains infor-

mation about the candidate’s log, and a voter does not grant its vote or reset its election timer if the

voter’s log is more up-to-date than the candidate’s.

We used AvailSim to investigate what effect, if any, this voting restriction has on leader election

performance. The simulation was configured with the same WAN network as in Section 9.4, but

each server was configured with a different log. Thus, only three, two, or one of the five servers

were eligible to become leader, depending on whether zero, one, or two of the servers had failed.

Figure 9.10 shows the results; performance is very similar to when the servers had equal logs.

The curves do have slightly different shapes (they have sharper corners), but the effect is small.

Thus, we do not believe the log comparison adversely affects leader election performance.

9.6 Preventing disruptions when a server rejoins the cluster

One downside of Raft’s leader election algorithm is that a server that has been partitioned from the

cluster is likely to cause a disruption when it regains connectivity. When a server is partitioned, it

will not receive heartbeats. It will soon increment its term to start an election, although it won’t

be able to collect enough votes to become leader. When the server regains connectivity sometime

later, its larger term number will propagate to the rest of the cluster (either through the server’s

RequestVote requests or through its AppendEntries response). This will force the cluster leader to

step down, and a new election will have to take place to select a new leader. Fortunately, such events

are likely to be rare, and each will only cause one leader to step down.

If desired, Raft’s basic leader election algorithm can be extended with an additional phase to

CHAPTER 9. LEADER ELECTION EVALUATION 137

prevent such disruptions, forming the Pre-Vote algorithm. In the Pre-Vote algorithm, a candidate

only increments its term if it first learns from a majority of the cluster that they would be willing

to grant the candidate their votes (if the candidate’s log is sufficiently up-to-date, and the voters

have not received heartbeats from a valid leader for at least a baseline election timeout). This was

inspired by ZooKeeper’s algorithm [42], in which a server must receive a majority of votes before

it calculates a new epoch and sends NewEpoch messages (however, in ZooKeeper servers do not

solicit votes, other servers offer them).

The Pre-Vote algorithm solves the issue of a partitioned server disrupting the cluster when it

rejoins. While a server is partitioned, it won’t be able to increment its term, since it can’t receive

permission from a majority of the cluster. Then, when it rejoins the cluster, it still won’t be able

to increment its term, since the other servers will have been receiving regular heartbeats from the

leader. Once the server receives a heartbeat from the leader itself, it will return to the follower state

(in the same term).

We recommend the Pre-Vote extension in deployments that would benefit from additional ro-

bustness. We also tested it in various leader election scenarios in AvailSim, and it does not appear

to significantly harm election performance.

9.7 Conclusion

Raft’s leader election algorithm performs well in a wide variety of scenarios. It is able to elect

leaders within tens of milliseconds on average on a real-world LAN. When election timeouts are

chosen randomly from a range of 10–20 times the one-way network latency, leaders are elected

within about 20 times the one-way network latency on average. Tail election times are also fairly

short. For example, 99.9% of elections complete in less than 3 seconds when the one-way network

latency is as high as 30–40 ms.

This chapter answered most of the basic questions about how Raft’s leader election algorithm

performs. Further analysis is required to answer the following additional questions:

• How much longer does leader election take when servers start with different initial current

term numbers?

• How does leader election perform in asymmetric networks, where each link has a different

latency?

• How well does leader election work on networks with severe packet loss?

• How well does leader election work when servers experience severe clock drift?

CHAPTER 9. LEADER ELECTION EVALUATION 138

Another interesting area of research would be to explore setting election timeouts dynamically.

Raft’s leader election performance depends on a properly configured election timeout, and it would

be nice to configure this election timeout automatically and dynamically. However, we do not know

how leader election will perform if different servers use different election timeout ranges (this is

related to the clock drift question above).

Chapter 10

Implementation and performance

This chapter discusses Raft’s implementations and its performance for log replication.

10.1 Implementation

We have implemented Raft as part of LogCabin, a replicated state machine implemented as a net-

work service. We initially developed LogCabin to store configuration information for RAMCloud [90]

and assist in failover of the RAMCloud coordinator. We had planned to implement Paxos in LogCabin,

but the difficulties we faced motivated us to develop Raft. LogCabin then served as our test plat-

form for new ideas in Raft, and also as a way to verify that we understood the issues of building a

complete and practical system. The Raft implementation in LogCabin contains roughly 2,000 lines

of C++ code, not including tests, comments, or blank lines. The source code is freely available [86].

Its architecture is discussed in the next section.

In addition to LogCabin, there are dozens of third-party open-source implementations of Raft in

various stages of development [92]. Many of these use different architectures than LogCabin, such

as the actor model [106, 73, 68] or event-based programming [75, 99, 107]. Various companies are

also deploying Raft-based systems [92]. For example, Facebook is currently testing HydraBase, a

fork of Apache HBase [3] that uses Raft for replication [29].

10.1.1 Threaded architecture

Raft lends itself to a straightforward implementation architecture using threads, as shown in Fig-

ure 10.1. This is not the only possible architecture, but it is the approach we have taken in LogCabin.

139

CHAPTER 10. IMPLEMENTATION AND PERFORMANCE 140

Figure 10.1: In LogCabin, consensus state for each server is stored in a monitor protected by
a single lock, accessed by a collection of threads. The threads communicate with other servers
(“peer threads”), handle incoming requests from clients and other servers (“service threads”),
execute commands in the state machine (“state machine thread”), implement timeouts (“timer
threads”), and write log entries to disk (“log sync thread”).

Each server consists of a collection of shared state variables managed in a monitor style with a single

lock. Five groups of threads call into the monitor to manipulate the state:

• Peer threads: There are as many peer threads as there are other servers in the cluster; each

peer thread manages the RPCs to one of the other servers. Each thread enters the consensus

state monitor, using a condition variable to wait for events that require communication with

the given server. Then it leaves the monitor (releasing the lock) and issues an RPC. Once the

RPC completes (or fails), the peer thread reenters the consensus state monitor, updates state

variables based on the RPC, and waits for the next event that requires communication.

• Service threads: Several threads handle incoming requests from clients and other servers.

These threads wait outside the consensus state monitor for incoming requests, then enter the

monitor to carry out each request.

• State machine thread: One thread executes the state machine. It enters the consensus state

monitor to wait for the next committed log entry; when an entry is available, it leaves the

monitor, executes the command, and returns to the monitor to wait for the next command.

• Timer threads: One thread manages the election timer for both followers and candidates; it

starts a new election once a randomized election timeout has elapsed. A second thread causes

the server to return to the follower state if, as leader, it is unable to communicate with a

majority of the cluster; clients are then able to retry their requests with another server (see

Section 6.2).

CHAPTER 10. IMPLEMENTATION AND PERFORMANCE 141

• Log sync thread: When the server is leader, one thread writes log entries durably to disk.

This is done without holding the lock on the consensus state, so replication to followers can

proceed in parallel; see Section 10.2.1. For simplicity, followers and candidates write directly

to disk from their service threads while holding the consensus lock; they do not use the log

sync thread.

10.2 Performance considerations

Raft’s performance is similar to other consensus algorithms such as Multi-Paxos. The most impor-

tant case for performance is when an established leader is replicating new log entries. Raft achieves

this using the minimal number of messages (a single round-trip from the leader to half the cluster).

It is also possible to further improve Raft’s performance. For example, Raft easily supports batch-

ing and pipelining requests for higher throughput and lower latency, as described below. Chapter 11

discusses various other optimizations that have been proposed in the literature for other algorithms;

many of these could be applied to Raft, but we leave this to future work.

Figure 10.2(a) shows the steps Raft must take to process a client’s request. Typically, the most

time-consuming steps are writing the new log entry to disk and replicating it across the network.

Writing to disk can take anywhere from 100 µs for a fast solid state disk to 10 ms for a slow magnetic

disk, while the latencies of today’s networks can vary from 5 µs round trip times in highly optimized

datacenter networks to 400 ms round trip times for networks that span the globe. In our experiments

on a local area network, either the disk or the network dominated, depending on which model of

solid state disk we used.

10.2.1 Writing to the leader’s disk in parallel

One useful performance optimization can remove a disk write from Raft’s critical path. In a naı̈ve

implementation, the leader writes the new log entry to disk before replicating the entry to its fol-

lowers. Then, the followers write the entry to their disks. This results in two sequential disk writes

on the path to process a request, contributing significant latency for deployments where disk writes

are a dominant factor.

Fortunately, the leader can write to its disk in parallel with replicating to the followers and them

writing to their disks; see Figure 10.2(b). To handle this simply, the leader uses its own match index

to indicate the latest entry to have been durably written to its disk. Once an entry in the leader’s

current term is covered by a majority of match indexes, the leader can advance its commit index.

CHAPTER 10. IMPLEMENTATION AND PERFORMANCE 142

(a) Unoptimized Raft pipeline.

(b) Optimized Raft pipeline.

Figure 10.2: To process a client’s request in an unoptimized implementation of Raft, the leader
takes the following steps, shown in (a): it receives the client’s request, appends it to its local log,
flushes the log entry to disk, and sends out AppendEntries requests. Then, the followers append
the entry to their logs and flush it to their disks. Once the leader receives positive AppendEntries
responses from half of its followers, it marks the entry committed, applies the entry to its state
machine, and replies to the client. In (b), the leader writes the log entry to its disk in parallel
with replicating the entry to the followers, which can reduce latency significantly.

The leader may even commit an entry before it has been written to its own disk, if a majority of

followers have written it to their disks; this is still safe. LogCabin implements this optimization.

10.2.2 Batching and pipelining

Raft supports batching and pipelining of log entries, and both are important for best performance.

Many of the costs of request processing are amortized when multiple requests are collected into a

batch. For example, it is much faster to send two entries over the network in one packet than in two

separate packets, or to write two entries to disk at once. Thus, large batches optimize throughput

and are useful when the system is under heavy load. Pipelining, on the other hand, optimizes latency

under moderate load by allowing one entry to start to be processed when another is in progress.

For example, while a follower is writing the previous entry to disk, pipelining allows the leader

to replicate the next entry over the network to that follower. Even at high load, some amount of

pipelining can increase throughput by utilizing resources more efficiently. For example, a follower

needs to receive entries over the network before it can write them to disk; no amount of batching

can use both of these resources at once, but pipelining can. Pipelining also works against batching

to some degree. For example, it might be faster overall to delay requests and send one big batch to

CHAPTER 10. IMPLEMENTATION AND PERFORMANCE 143

followers, rather than pipelining multiple small requests.

Batching is very natural to implement in Raft, since AppendEntries supports sending multiple

consecutive entries in one RPC. Leaders in LogCabin send as many entries as are available between

the follower’s next index and the end of the log, up to one megabyte in size. The one megabyte limit

is arbitrary, but it is enough to use the network and disk efficiently while still providing frequent

heartbeats to followers (if one RPC got to be too large, the follower might suspect the leader of fail-

ure and start an election). The follower then writes all the new entries from a single AppendEntries

request to its disk at once, thus making efficient use of its disk.

Pipelining is also well-supported by Raft. The AppendEntries consistency check guarantees

that pipelining is safe; in fact, the leader can safely send entries in any order. To support pipelining,

the leader treats the next index for each follower optimistically; it updates the next index to send

immediately after sending the previous entry, rather than waiting for the previous entry’s acknowl-

edgment. This allows another RPC to pipeline the next entry behind the previous one. Bookkeeping

is a bit more involved if RPCs fail. If an RPC times out, the leader must decrement its next in-

dex back to its original value to retry. If the AppendEntries consistency check fails, the leader may

decrement the next index even further to retry sending the prior entry, or it may wait for that prior

entry to be acknowledged and then try again. Even with this change, LogCabin’s original threading

architecture still prevented pipelining because it could only support one RPC per follower; thus, we

changed it to spawn multiple threads per peer instead of just one.

This approach to pipelining works best if messages are expected to be delivered in order in

the common case, since reordering may lead to inefficient retransmissions. Fortunately, most envi-

ronments will not reorder messages often. For example, a leader in LogCabin uses a single TCP

connection to each follower, and it only switches to a new connection if it suspects a failure. Since a

single TCP connection masks network-level reordering from the application, it is rare for LogCabin

followers to receive AppendEntries requests out of order. If the network were to commonly reorder

requests, the application could benefit from buffering out-of-order requests temporarily until they

could be appended to the log in order.

The overall performance of a Raft system depends greatly on how batches and pipelines are

scheduled. If not enough requests are accumulated in one batch under high load, overall processing

will be inefficient, leading to low throughput and high latency. On the other hand, if too many

requests are accumulated in one batch, latency will be needlessly high, as early requests wait for

later requests to arrive.

While we are still investigating the best policy, our goal is to minimize the average delay for

CHAPTER 10. IMPLEMENTATION AND PERFORMANCE 144

code LogCabin [86], written in C++11
OS x86-64 RHEL6 (Linux 2.6.32)

CPU Xeon X3470 (4 cores, 8 hyperthreads)
disk ext4 file system on Intel DC S3500 SSDs (1 SSD per server; write caching off)

network Protocol Buffers [111] over TCP/IP over 1 gigabit Ethernet
configuration in-memory state machine, no log compaction

Table 10.1: Experimental setup.

requests under dynamic workloads. Before we had implemented pipelining in LogCabin, it used a

simple double-buffering technique. The leader would keep one outstanding RPC to each follower.

When that RPC returned, it would send another one with any log entries that had accumulated in the

meantime, and if no more entries were available, the next RPC would be sent out as soon as the next

entry was appended. This approach is appealing because it dynamically adjusts to load. As soon as

load increases, entries will accumulate, and the next batch will be larger, improving efficiency. Once

load decreases, batches will shrink in size, lowering latency. We would like to retain this behavior for

pipelining. Intuitively, in a two-level pipeline, we would like the second batch to be started halfway

through the processing time for the first batch, thus halving the average delay. However, guessing

when a batch is halfway done requires estimating the round-trip time; we are still investigating the

best policy to use in LogCabin.

10.3 Preliminary performance results

We have not yet analyzed the performance of LogCabin in depth, but we have taken some initial

measurements. The experimental setup is summarized in Table 10.1. In the benchmark, a single

client process connects to the leader of a LogCabin cluster. Varying numbers of client threads issue

operations to the replicated state machine to set a 1,024 byte value. Each client thread repeatedly

issues a request on a shared TCP connection, waits for the result from the leader’s state machine,

then issues its next request.

Figure 10.3(a) shows the current throughput of LogCabin. Using a multi-threaded client with

100 threads, a three-server cluster sustains about 19,500 kilobyte-sized writes per second. As ex-

pected, performance degrades when using larger clusters, since the leader has to send each entry to

a larger number of followers.

Figure 10.3(b) shows the current latency of LogCabin. The latency for a kilobyte-sized write

is about 0.7 ms for a single-server cluster and about 1.0 ms for two- to five-server clusters. This

CHAPTER 10. IMPLEMENTATION AND PERFORMANCE 145

(a) Throughput.

(b) Latency.

Figure 10.3: Preliminary latency and throughput measurements of LogCabin. In each test, a
single client process connects to the leader of a LogCabin cluster of varying size. In (a), varying
numbers of client threads issue operations to the state machine to set a 1,024 byte value; in (b),
only one client thread is used. Each client thread repeatedly issues a request on a shared TCP
connection, waits for the result from the leader’s state machine, then issues its next request.
Each data point represents the mean of five runs of approximately 10 seconds each; error bars
show the minimum and maximum values across the five runs (the range is very small for most
points).

CHAPTER 10. IMPLEMENTATION AND PERFORMANCE 146

includes the time to write one kilobyte durably to disk, which we measured in a microbenchmark to

be about 0.25 ms.

The initial measurements are encouraging, and we think the current performance would be suf-

ficient for a large class of applications. However, there is still much room for improvement. For

example, gigabit Ethernet would limit the performance of a three-server cluster to about 60,000

kilobyte-sized writes per second, and LogCabin’s current throughput is only one third of that.

10.4 Conclusion

There are many performance aspects of Raft we would like to analyze in the future. Most impor-

tantly to normal operation, we would like to analyze the latency and throughput for write operations

and for read-only operations under varying load. There are various performance questions that arise

during exceptional circumstances that we would also like to analyze:

• How quickly do clients find the leader?

• How quickly does a new leader commit its first entry, including how quickly does a leader

discover where its followers’ logs diverge?

• What is the effect of follower failures on normal operation?

• How long does it take to reconfigure the cluster, and what is its effect on normal operation?

• How long does it take to compact the log, and what is its effect on normal operation?

• How long does it take a server/cluster to restart?

Our performance goal with Raft was to match current algorithms such as Multi-Paxos, while

improving understandability. Rather than wanting to build the fastest system, we wanted to enable

others to build consensus-based systems that were competitive in performance. Though LogCabin is

not yet well-optimized, preliminary results show that it achieves reasonable latency and throughput:

writing kilobyte-sized objects to a three-server cluster takes about 1.0 ms per operation with a single

client thread, and the system processes 19,500 operations per second when using 100 client threads.

Chapter 11

Related work

This chapter discuss the strengths and weaknesses of Raft in the context of related work. Sec-

tion 11.1 first gives a brief introduction to other consensus algorithms and compares them to Raft at

a high level. Then, Sections 11.2–11.8 focus on more specific details of how these consensus algo-

rithms compare to Raft. Finally, Section 11.9 discusses work related to evaluating understandability.

11.1 Overview of consensus algorithms

This section introduces existing consensus algorithms that are comparable to Raft, specifically

Paxos, Viewstamped Replication, and Zab. Like Raft, these algorithms handle fail-stop but not

Byzantine failures, and they do not rely on time for safety (the key properties of practical con-

sensus algorithms can be found in Section 2.1). Readers may also be interested in van Renesse et

al.’s more theoretical comparison of these algorithms [109].

Other consensus algorithms exist for different system models, but these are less commonly used.

Notably, some algorithms address Byzantine consensus, where arbitrary failures and misbehaviors

are possible [13, 65, 76]; these are more complex and lower in performance than algorithms under

the fail-stop model.

11.1.1 Paxos

Paxos (most commonly Multi-Paxos) is the most widely deployed consensus algorithm today:

• Several Google systems use Paxos, including the Chubby [11, 15] lock service and the Mega-

store [5] and Spanner [20] storage systems. Chubby is used for cluster metadata, whereas

147

CHAPTER 11. RELATED WORK 148

Megastore and Spanner use Paxos for all of their data storage.

• Microsoft also uses Paxos in various systems. Microsoft’s Autopilot service [40] (used by

Bing) and Windows Azure Storage [12] use Paxos for metadata. Azure’s Active Directory

Availability Proxy [4] uses Paxos to agree on a series of requests for arbitrary REST services.

• The open-source Ceph storage system uses Paxos to store its cluster map, the data structure

that allows clients to find where objects are located [112, 14].

• Recently, eventually-consistent data stores such as Cassandra [1] and Riak [6] have added

Paxos to provide linearizable access for some data. Cassandra appears to use an unoptimized

implementation of Basic Paxos [26], and a future release of Riak will include an implemen-

tation of Multi-Paxos [9].

Paxos is a broad term for a whole family of consensus protocols. Lamport’s original description

of Paxos [48] presents sketches for a complete system but not in enough detail to implement. Several

subsequent papers attempt to explain Paxos [49, 60, 61], but they also don’t explain their algorithms

completely enough to implement. There are many other elaborations of Paxos, which fill in missing

details and modify Paxos to provide a better foundation for implementation [108, 46]. Additionally,

we developed our own explanation for and elaboration of Paxos in a video lecture as part of the

Raft user study [88]; the Multi-Paxos variant we used is summarized in Figure A.2. Unfortunately,

all of these elaborations of Paxos differ from each other. This is burdensome for readers, and it also

makes comparisons difficult. Ultimately, most implementations bear little resemblance to the Paxos

literature, and some may even deviate so far from Paxos as to resemble Raft. After reading an earlier

draft of the Raft paper, one Spanner developer made the following remark during a talk:

Our Paxos implementation is actually closer to the Raft algorithm than to what you

read in the Paxos paper. [43]

For the purpose of this chapter, we have tried to compare Raft to common ideas found in Multi-

Paxos elaborations, but we did not limit our discussion to a particular algorithm.

Chapter 2 discussed how Paxos is difficult to understand and is a poor foundation for building

systems. Its single-decree formulation is difficult to decompose, and Multi-Paxos leaves the log

with too much nondeterminism and too little structure (e.g., it can have holes). Multi-Paxos uses

only a very weak form of leadership as a performance optimization. These problems make Paxos

needlessly complex, which burdens both students and systems builders.

CHAPTER 11. RELATED WORK 149

11.1.2 Leader-based algorithms

Viewstamped Replication and Zab are two leader-based consensus algorithms that are closer in

structure to Raft and therefore share many of Raft’s advantages over Paxos. As in Raft, each al-

gorithm first elects a leader, then has that leader manage the replicated log. The algorithms differ

from Raft in how they handle leader election and repairing inconsistencies in the logs after leader

changes; the next sections in this chapter go into more details on these differences.

Oki and Liskov’s Viewstamped Replication is a leader-based consensus algorithm developed

around the same time as Paxos. The original description [83, 82] was intertwined with a protocol

for distributed transactions, which may have caused many readers to overlook its contributions. The

core consensus algorithm has been separated in a recent update called Viewstamped Replication

Revisited [66], and Mazières [77] also expanded on the details of the core algorithm before Liskov’s

update. Though Viewstamped Replication is not widely used in practice, it was used in the Harp File

System [67].

Zab [42], which stands for ZooKeeper Atomic Broadcast, is a much more recent algorithm

that resembles Viewstamped Replication. It is used in the Apache ZooKeeper coordination ser-

vice [38], which is the most popular open-source consensus system today. A cluster membership

change mechanism was recently developed for Zab [104] and is scheduled for a future ZooKeeper

release [113].

Raft has less mechanism than Viewstamped Replication and Zab because it minimizes the func-

tionality in non-leaders. For example, we counted the message types Viewstamped Replication Re-

visited and Zab use for basic consensus and membership changes (excluding log compaction and

client interaction, as these are nearly independent of the algorithms). Viewstamped Replication Re-

visited and Zab each define 10 different message types, while Raft has only 4 message types (two

RPC requests and their responses). Raft’s messages are a bit more dense than the other algorithms’,

but they are simpler collectively. In addition, Viewstamped Replication and Zab are described in

terms of transmitting entire logs during leader changes; additional message types will be required

to optimize these mechanisms so that they are practical.

Zab presents a slightly stronger guarantee than Raft for clients issuing concurrent requests. If

a client pipelines multiple requests, Zab guarantees that they are committed in order (if at all);

this property is called FIFO client order. For example, this allows a client to issue a bunch of

changes and then release a lock, all asynchronously; other clients will see the changes reflected in

the replicated state machine before they see the lock released. Paxos does not satisfy this property,

since commands are assigned to log entries with few constraints; see [42]. Raft and Viewstamped

CHAPTER 11. RELATED WORK 150

Replication could provide the same guarantee as Zab, since their leaders append new entries in order

to the log. However, some extra care would be required to prevent network and client retries from

reordering the client’s commands to leaders.

11.2 Leader election

This section discusses how different consensus algorithms address leader election. Raft uses an

approach with very little mechanism, while other algorithms are generally more complex without

offering practical advantages.

In a broad sense, leader election includes the following four issues, which the following subsec-

tions discuss in depth:

1. Detecting a failed leader.
Raft uses heartbeats and timeouts.

2. Neutralizing deposed leaders.
In Raft, candidates propagate a new term number while soliciting votes and replicating the

log.

3. Selecting a server to be the new leader.
Raft uses randomized timeouts, and the first candidate to time out usually becomes leader.

Voting ensures that there is at most one leader per term.

4. Ensuring the leader has all committed entries.
In Raft, the log comparison check during voting ensures that a new leader already has all

committed entries; no log entries are transferred.

11.2.1 Detecting and neutralizing a failed leader

In all practical settings, it is impossible to distinguish a failed server from a slow server; this is the

key characteristic of an asynchronous system. Fortunately, practical consensus algorithms preserve

safety even if leaders are suspected of failing when they are simply slow. Thus, failure detection

only needs to detect failed servers eventually (completeness) and not suspect available servers with

high probability (accuracy). These weak requirements are easily satisfied in practical systems by

using heartbeats and timeouts.

CHAPTER 11. RELATED WORK 151

Various failure detectors built on heartbeats and timeouts have been discussed in the theoretical

literature [16]. ♦P (or equivalently, Ω) is a failure detector with nice theoretical properties: even-

tually (after some unknown period of time), it will be perfectly correct and accurate. It does so by

increasing its timeouts every time a suspicion is incorrect; eventually, its timeouts will be so large

that it makes no false suspicions. However, this behavior is impractical for real systems, which care

about availability: if the timeout value grows too large, the cluster will wait too long to detect a

leader failure. It is better to falsely suspect a leader of failure when it is slow than to wait around to

be sure. Therefore, Raft’s timeouts are fixed low enough to satisfy the system’s availability require-

ments.

Paxos, Zab, and Viewstamped Replication either do not specify a failure detector or briefly men-

tion the use of timeouts but do not spell out the details. This may be because approaches to failure

detection are mostly independent of the consensus algorithm. However, we found that combining

heartbeats with other messages has practical benefits. For example, Raft’s AppendEntries RPC not

only serves as a heartbeat but also informs followers of the latest commit index.

Since failure detectors can mistakenly report the leader as having failed when it is in fact slow, a

suspected leader must be neutralized. The various consensus algorithms handle this similarly using

a monotonically increasing number (called a term in Raft, a proposal number in Paxos, a view in

Viewstamped Replication, or an epoch in Zab). Once a server has seen a larger number, it will

no longer accept requests from a leader with a smaller number. Most algorithms, including Raft,

inform the sender that it is stale when a server receives such a request; in some descriptions of

Paxos, however, the recipient does not reply.

Algorithms assign term numbers to servers in two different ways. Zab and Raft use voting to

ensure there is at most one leader per term: if a server is able to collect a majority of votes, it has

exclusive use of that term number for replicating log entries. Paxos and Viewstamped Replication

divide the space of numbers so that servers do not compete for particular numbers (e.g., by allocating

numbers to servers in a round-robin fashion). There does not seem to be a practical difference

between these two approaches, since voting must occur in either case.

11.2.2 Selecting a new leader and ensuring it has all committed entries

Algorithms differ in which server they select as leader, as summarized in Table 11.1. Paxos and

Zab choose any server as leader, while the other algorithms restrict which server can become leader.

One advantage of Paxos and Zab’s approach is that they can accommodate preferences about which

server should be leader during leader election. For example, if a deployment performs best when

CHAPTER 11. RELATED WORK 152

algorithm new leader vote collector handles preferences

Paxos any server new leader yes
VR has up-to-date log view manager no
VRR determined by view number new leader no
Zab any server new leader yes
Raft has up-to-date log new leader no

Table 11.1: Summary of how different algorithms select a new leader. The “new leader” col-
umn shows which servers may become the new leader. The “vote collector” column shows
which server solicits votes; in all but the original Viewstamped Replication paper, this is the
candidate for leadership. The “handles preferences” column shows which algorithms are able
to accommodate preferences in which server becomes leader during election; other algorithms
would need separate leadership transfer mechanisms to accommodate this.

a server from a particular datacenter acts as leader, Paxos or Zab can allow that server to become

leader. The other algorithms are not able to do so because they constrain which server may become

leader; they need a separate leadership transfer mechanism (as described in Chapter 3 for Raft) to

accommodate such preferences.

Viewstamped Replication Revisited uses a different round-robin approach for choosing which

server becomes leader. The leader is a function of the view (term) number: in an n-server cluster, a

server i is the leader for view v if v % n = i . This approach has the advantage that clients can likely

guess and find the leader based on the current view number (to do this, clients must track the current

configuration and view number). However, it may result in additional delays if the designated leader

for a view is unavailable or if servers have different notions of the current view.

The original Viewstamped Replication algorithm is closest to Raft in that only a server whose

log is as up-to-date as a majority of the cluster can become leader. This has a big advantage in that it

avoids transferring log entries to the new leader; it simplifies the flow of data to go only from clients

to leaders to followers. Viewstamped Replication uses one server to manage the election process

(the view manager) and a different server becomes the leader. The view manager chooses the server

with the most up-to-date log of a majority of the cluster to be the new leader, then informs that

server of its new leadership role. In Raft, the same server both runs the election and becomes leader,

which avoids some mechanism and reduces state space complexity. Zab also suggests choosing the

new leader as having a sufficiently up-to-date log (like Raft) as a possible optimization, and this

optimization is apparently implemented in ZooKeeper [94].

Paxos, Viewstamped Replication Revisited, and (unoptimized) Zab need additional mechanism

to ensure the new leader has all committed entries, since they do not choose the leader based on

CHAPTER 11. RELATED WORK 153

its log. In Paxos, the leader typically runs both phases of single-decree Paxos for each log entry in

which it does not know the committed value, until it reaches a log index for which no available server

has seen any more proposals. This may result in significant delays until the new leader catches up.

Viewstamped Replication Revisited and Zab are described as if servers send their entire logs to the

new leader and the new leader adopts the most up-to-date one. This is a nice model but is impractical

for large logs; both papers suggest optimizing this by sending fewer entries but do not spell out the

details.

11.3 Log replication and commitment

All consensus algorithms specify how to send new log entries to other servers and when to mark

them committed. This is usually done in one round of communication from the leader in the normal

case, and it is usually straightforward to apply batching and pipelining to make replicating multiple

entries faster.

The algorithms differ in how far they can proceed out of order. Raft, Zab, and Viewstamped

Replication must all append and commit entries to the log in order, so that followers’ logs always

remain consistent with the leader’s. Traditionally, Multi-Paxos allows servers to accept and commit

values for entries in any order. This does not offer Paxos a significant performance advantage,

however, since commands must still be applied to the state machines in order. Raft and the other

algorithms that maintain a log in order can also transmit log entries out of order; they just cannot be

appended to the log this way. (In these algorithms, servers could buffer the entries outside the log

until they are ready to be appended, if desired.)

The algorithms also differ in what new leaders do with existing entries in their logs, as illustrated

in Figure 11.1:

• In Paxos, a new leader goes through the two phases of single-decree Paxos for each uncom-

mitted entry it finds, rewriting and renumbering them all with its current proposal number.

This either commits the local value or discovers an existing committed value. Meanwhile, it

can replicate and commit but not yet apply client commands in further log slots.

• In Viewstamped Replication Revisited and Zab, a new leader transfers its entire initial log to

each follower before starting its term, and the entire log is effectively renumbered with the

new view. This is impractical for large logs and should be optimized to send fewer entries in

practice, but the details have not been published. It is fairly easy to determine which entries

CHAPTER 11. RELATED WORK 154

Figure 11.1: Example of how algorithms differ in which entries a new leader replicates from
its log. In Paxos, the new leader for term 4 executes phases 1 and 2 of Paxos for entries 4–8
using its new proposal number, since it does not believe that those are committed. As described
in the Viewstamped Replication and Zab papers, the new leader replicates its entire log to the
follower. In Raft, the leader only transmits entries 5–8 to the follower, the minimal number of
entries required.

to send if the two servers both participated in the last view but more difficult to determine

otherwise (without the term numbers in each entry as in the figure, one idea would be to

compare cumulative hashes of log prefixes).

• A new leader in Raft transfers just the minimal number of entries to make other servers’

logs match its own. After some back-and-forth with heartbeats to discover where the logs

diverge, the only entries that are transferred are those that differ. Key to this feature is that

entries are not renumbered, so the same entry will have the same index and term across logs

for all time. Without this property, some servers would have an entry under its original term

number, and others would have it under new term numbers. A subsequent leader would have

to needlessly overwrite some of these copies, since it wouldn’t know which ones contain the

same command.

By transferring log entries rather than logs, Raft allows more intermediate states than VR and

Zab. These intermediate states are ambiguous in Raft, thus cannot be used for commitment (see

Figure 3.7). This has three consequences.

First, if we could somehow observe a snapshot of an entire cluster, an entry in Raft can be present

on a majority of servers but not committed. Instead, to determine whether an entry is committed, one

must ask if future leaders must have the entry: does every server that could be elected leader with its

current log have the entry in its log? If so, the entry is committed; otherwise, it is not. This requires

more complex reasoning for an omniscient observer than in other algorithms: rather than counting

CHAPTER 11. RELATED WORK 155

how many replicas of the entry exists, one must essentially execute the consensus algorithm.

Second, during operation, Raft has a two-part commitment rule, in which entries from prior

terms are not directly marked committed; they are only marked committed once an entry from the

current term has reached a majority of the cluster (at this point, any ambiguity is resolved). This

does not significantly burden implementations, which only need a single additional if statement.

Interestingly, this commitment rule would not be possible in a single-decree consensus formulation;

it relies on the log formulation so that later entries can commit earlier ones.

Finally, infinite leader changes can require infinite space in Raft. Specifically, a leader has to

create an entry in order to commit previous entries in order to compact them, but if it crashes first,

its log will then contain an additional entry. In theory, this process could repeat and exhaust storage

capacity. However, we don’t believe this to be a significant practical concern, since it would be

unlikely for leader election to succeed so frequently yet leaders to fail so frequently.

An alternative to Raft’s commitment approach would be to add an extra term to logs, similar

to Viewstamped Replication Revisited. The log’s term would be the term of the latest leader to

replicate an entry to the log. The log’s term would usually be the same as the term of the last entry

in the log, but it would be ahead briefly while new leaders catch followers up to match the leader’s

initial log. If the log’s term was used during elections instead of the term of the last entry, then

the commitment rule could be simplified: commitment would require a majority of servers to have

the entry and the same log term. Based on its similarity to Viewstamped Replication, we think this

approach would work, though we haven’t proved it correct. The downside is that this results in three

terms to juggle: the server’s current term, the log’s term, and the terms in the individual entries. We

think delaying commitment until the ambiguity is resolved is easier.

11.4 Cluster membership changes

Several different approaches for cluster membership changes have been proposed or implemented

in other work. Most of these implement arbitrary cluster membership changes, while Raft restricts

changes to single-server additions and removals. We do not know of prior work that discusses re-

stricting changes to single-server additions and removals for simplicity, though we think it is likely

that prior systems have implemented this. The remainder of this section compares related work

to Raft’s joint consensus approach to arbitrary cluster membership changes, as presented in Sec-

tion 4.3.

CHAPTER 11. RELATED WORK 156

In order to ensure safety across arbitrary configuration changes, the changes must use a two-

phase approach. There are a variety of ways to implement the two phases. For example, some

systems (e.g., [66]) use the first phase to disable the old configuration so it cannot process client

requests; then the second phase enables the new configuration. In the approach to arbitrary configu-

ration changes in Raft, the cluster first switches to a transitional configuration called joint consensus;

once the joint consensus has been committed, the system then transitions to the new configuration.

11.4.1 α-based approaches

Lamport [48, 49] proposed for Paxos that the i th log entry would determine the cluster membership

for the i +α th log entry. The two phases in this approach are:

1. The new configuration is agreed upon at log entry i ; then

2. The new configuration takes effect at log entry i +α .

A cluster is able to process requests during configuration changes, up to the α limit.

Unfortunately, α also limits the degree of concurrency of a Paxos cluster during normal opera-

tions. If entry i is the first entry not yet known to be committed, it is possible that i could eventually

end up changing the configuration; thus, servers cannot send proposals for entry i +α or beyond

until they learn of i ’s commitment. α can be configured to be large to allow for sufficient pipelin-

ing/batching of entries during normal operation, but then configuration changes take longer to take

effect. To mitigate this, a server can propose no-op entries in the intervening α−1 log entries.

While Lamport’s proposal handles safety concerns quite simply, it leaves many liveness and

availability questions unanswered. For example, the new servers need to learn all the decisions from

the old cluster so their state machines can advance. How do the new servers get these entries, and

how do the old servers know when they can shut down? How do the new servers even know what

the old or new configurations are?

SMART [69] is an attempt to address these questions. In SMART, each physical server hosts

one or more virtual servers, and each virtual server participates in a single cluster with a static

configuration. SMART uses an α-like approach for determining when one configuration should

finish accepting client requests and terminate. When the old configuration receives a membership

change request, it informs the new configuration to begin at a particular log index (α entries later).

Once the final log from the old configuration has been transmitted to a majority of the servers in the

new configuration, the new configuration may start servicing client requests, and the virtual servers

in the old configuration may shut down.

CHAPTER 11. RELATED WORK 157

SMART’s model for membership changes may be challenging to implement efficiently. During

the change, if one physical server is part of both the old and the new cluster, it must simultaneously

run two virtual servers, one for each configuration. To make this space-efficient, some of the server’s

state is moved to a separate execution model which is shared by all virtual servers on a single phys-

ical server. Unfortunately, this adds significant mechanism and complexity for implementations. In

contrast, in Raft, each server participates in only one configuration at a time; it always uses the latest

configuration in its log.

The α and SMART approaches are incompatible with Raft’s commitment rule. In Raft, if a

leader cannot append to its log, it may not be able to mark existing entries as committed. For

example, suppose a leader reached its limit of α uncommitted entries, then restarted and became

leader again. Due to the α limitation, the leader could not create any new entries in its current

term, so it wouldn’t be able to mark any existing entries committed. In this case, α and Raft are in

conflict: α requires commitment to append new entries, but Raft requires appending new entries for

commitment.

If Raft’s commitment rule were not an issue (e.g., if Viewstamped Replication’s commitment

rule were used instead), the α or SMART approaches to membership changes could work, but Raft’s

leader-based approach poses additional challenges. Log entries in Raft are only sent from the leader

to other servers, so the old cluster’s leader needs to replicate all of its entries to the new cluster

(as well as committing them to the old cluster). Thus, the old cluster leader would need to add the

new cluster servers as non-voting members of its configuration. With the α approach (but not with

SMART), the need to maintain a leader in the old cluster results in scenarios where there are two

leaders in a single Raft cluster: the leader of the old cluster replicates the log up to i +α and cannot

write beyond that, and the leader of the new cluster knows the entries up to i +α are committed

and replicates new log entries past i +α . Even if the two leaders don’t conflict over log entries, they

are likely to introduce availability issues without additional mechanisms. The SMART approach

is conceptually simpler for allowing multiple concurrent leaders, since the leaders are members of

distinct clusters.

11.4.2 Changing membership during leader election

The original Viewstamped Replication algorithm did not include membership changes, but View-

stamped Replication Revisited and a paper by Mazières [77] each extends the original algorithm to

support membership changes. Both approaches change the membership between views while the

cluster has no leader. Thus, neither can process client requests during membership changes, and

CHAPTER 11. RELATED WORK 158

neither approach is compatible with Raft, which requires a leader to transfer entries to the new

servers.

In Viewstamped Replication Revisited, the new configuration is committed as a special log entry

under the old configuration, then a view change (leader election) is initiated. The servers in the new

configuration must update themselves from the old cluster before they can begin participating in the

new view (term). Meanwhile, they cannot process client requests. When the leader and enough other

servers have updated themselves, the cluster resumes processing client requests. The two phases in

this approach are:

1. The old servers move to a new view, thereby stopping client requests; and

2. Once the new servers have gotten the necessary log entries, they resume processing client

requests.

Mazières presents another approach in which the cluster membership is decided as part of view

changes [77]. To form a new view, the cluster reaches agreement both on who the leader will be and

on who the cluster members will be. The two phases in this approach are:

1. When a server accepts an invitation for a new view, it stops accepting requests from the leader

of the old view; and

2. Once the server learns the view change has been agreed upon, it begins accepting requests

from the leader of the new view.

In some cases when intervening view changes have failed, the servers must sometimes require a

majority of the old cluster and a majority of the new cluster for agreement to begin operating in the

new view; this is similar to joint consensus but is only used in special cases.

Mazières’s approach operates using additional messages rather than log entries, since there is no

leader during the view change to commit log entries. This requires additional mechanism to agree

upon and transmit configurations, which Raft avoids. Raft’s algorithm also has the advantage that

normal requests can proceed during membership changes; in contrast, both Viewstamped Repli-

cation Revisited and Mazières’s approaches must temporarily stop all normal processing during

membership changes.

Neither Viewstamped Replication Revisited nor Mazières’s approach works for Raft because

Raft has no separate mechanism for “state transfer”. In Raft, the old servers must maintain a leader

long enough to replicate and commit log entries to the new servers, but the Viewstamped Replication

CHAPTER 11. RELATED WORK 159

Revisited and Mazières approaches require the cluster to be able to replicate log entries without a

leader.

11.4.3 Zab

Zab’s approach to membership changes is the closest to Raft’s joint consensus approach, and the

basic idea would also work for Raft. The two phases in Zab’s approach are:

1. A log entry containing the new configuration is committed to both a majority of the old cluster

and a majority of the new cluster. The old leader may continue to replicate entries past the

new configuration entry, but it may not mark any further entries committed (unless it is also

part of the new cluster).

2. Then, the leader of the old cluster sends Activate messages to the new cluster, informing the

new cluster of the configuration entry’s commitment. This enables the new cluster to elect a

leader and continue operations. If the old leader is also part of the new cluster, it can continue

as leader.

Raft’s joint consensus approach records state during membership changes more explicitly in the

log: it uses a second log entry to activate the new configuration, whereas Zab uses Activate messages

that are not logged. This makes Zab’s transitions and failure recovery more complex, as a server’s

current configuration depends on both its log and its latest committed configuration. In Raft, on the

other hand, a server always uses the latest configuration in its log, and failures are handled with no

additional mechanism.

Neither algorithm stalls client operations when the old leader is also part of the new cluster,

as this server continues as leader throughout and beyond the membership change. However, Zab’s

treatment of leaders that are being removed from the cluster differs from Raft’s in two ways:

1. In Raft a leader that is being removed continues to commit log entries until it steps down. In

Zab, however, a leader that is being removed may not commit any log entries that come after

the configuration change entry in its log. It may still replicate those entries, though, and the

effect of this restriction is probably small.

2. In Zab if the leader removes itself from the cluster, the new servers will begin leader election

right away, and the old leader can designate a new server to become leader immediately.

In Raft the new servers wait for an election timeout, but using Raft’s leadership transfer

extension (Chapter 3) can similarly avoid this delay.

CHAPTER 11. RELATED WORK 160

ZooKeeper allows reads to be served by any server, and, without additional mechanism, clients

may end up imbalanced across servers after membership changes. For example, servers that have

recently been added to a cluster will have a disproportionately low number of clients connected to

them. The paper describes a probabilistic algorithm to rebalance client load to the new servers after

a membership change, which would also be useful for Raft implementations that allow reads from

any server.

11.5 Log compaction

Log compaction is a necessary component of any consensus-based system, but unfortunately, the

topic is neglected in many papers. We can think of two reasons why this might be the case:

1. Most of the issues of log compaction are equally applicable to all consensus algorithms. All

algorithms must eventually commit each log entry, and committed entries can then be com-

pacted without affecting the consensus algorithm much (since consensus has already been

reached). Thus, from a theoretical point of view, compaction is nearly orthogonal to the con-

sensus algorithm and may not logically belong in a paper about a consensus algorithm.

2. Log compaction involves a large number of design choices, and some of these may vary

by implementation. Different approaches trade off complexity, performance, and resource

utilization in different ways, and implementations may vary significantly in their requirements

(for example, ranging from very small to very large state machines). Some authors attempt to

describe algorithms in the most general terms possible, and it is difficult to be inclusive of all

possible implementations when facing such a large design space.

This dissertation discussed several forms of log compaction. The biggest design choice is be-

tween incremental approaches (described in Section 5.3), and snapshotting, which is simpler but

less efficient. Many consensus-based systems use some form of snapshotting. Raft’s snapshotting

approach is very similar to that of Chubby [15], and a similar snapshotting approach is outlined

briefly in Viewstamped Replication Revisited [66].

ZooKeeper [38] uses fuzzy snapshots: rather than taking a consistent snapshot using copy-on-

write techniques, a snapshot in ZooKeeper can partially reflect later changes, thereby not repre-

senting the state of the system at a particular point in time. The changes that may or may not have

already been applied to the snapshot are reapplied on server startup, resulting in a consistent state.

CHAPTER 11. RELATED WORK 161

(a) Traditional replicated state machine approach.

(b) Primary copy approach.

Figure 11.2: In the primary copy architecture, the primary’s state machine processes requests
from clients and calculates resulting states, which its consensus module replicates into the
servers’ logs. The figure shows a client submitting a request to increment a variable y , which
the primary translates into an operation to set y to 2.

Unfortunately, fuzzy snapshots are covered by a US patent [95], and they are also more difficult to

reason about than consistent snapshots.

11.6 Replicated state machines vs. primary copy approach

The original Viewstamped Replication paper and ZooKeeper operate slightly differently from tra-

ditional replicated state machines, using a primary copy architecture instead. The primary copy

architecture is illustrated in Figure 11.2. It is similar to replicated state machines in that each server

still has a consensus module, a state machine, and a log. However, the primary’s (leader’s) state

machine processes requests as soon as they arrive from clients, instead of waiting for them to be

committed. It then computes the state resulting from each request, and the final state, rather than the

original requests, is replicated in the log using consensus. Once the log entries are committed, the

effects of the client requests are externalized to clients. (For linearizability, the primary should also

include client responses in the log entries, allowing backups servers to return the same response in

case clients retry; see Chapter 6.)

From the point of view of the consensus algorithm, the primary copy approach is very similar to

CHAPTER 11. RELATED WORK 162

replicated state machines. Thus, nearly all of the Raft algorithm applies equally well to the primary

copy approach. However, the state machine and overall system are somewhat more complex in the

primary copy approach. They differ in three ways.

First, the primary’s state machine in primary copy systems reflects uncommitted entries in the

log, whereas in replicated state machines, the state machines only reflect committed entries. This

distinction is necessary for primaries to produce the resulting states when they receive client re-

quests, but it introduces two complications: the state machine must take caution not to externalize

any uncommitted state, and if another server becomes the primary, the old primary’s state machine

needs to roll back its recent uncommitted changes.

Second, the log in the replicated state machine approach includes all client requests, even those

that ended up having no effect. For example, a conditional write operation whose condition was not

met would still occupy space in the log. In the primary copy approach, the primary would not need

to append anything new to its log for such failed operations (it would only need to wait until it was

safe to externalize the response). On the other hand, this is unlikely to have a significant effect on

the system’s capacity, as logs must eventually be compacted in either approach.

Third, the state machines in the replicated state machine approach must be deterministic, since

every server must arrive at the same result after applying the same series of client requests. For

example, the effects of client requests must not depend on each server’s current time. In the primary

copy approach, however, the primary’s state machine need not be deterministic; it may do anything

it likes with the request, as long as the state change it produces is deterministic. Fortunately, a

hybrid approach allows replicated state machines to overcome this limitation in most cases: the

server receiving a client request can augment that request with additional nondeterministic inputs,

such as its current time and a random number, before appending the request into the replicated logs.

All of the servers’ state machines can then process the augmented request deterministically.

11.7 Performance

Many papers have proposed performance enhancements to Paxos and other consensus algorithms.

Although these performance enhancements can be useful, implementers will have to judge which,

if any, are appropriate in their situations. Prior to describing the enhancements in related work, we

discuss several considerations that may be significant in these decisions.

First, others before us have recognized that performance of consensus is sometimes secondary

to understandability or ease of implementation. For example, Boxwood [72] uses an implementation

CHAPTER 11. RELATED WORK 163

of Paxos that only processes one log entry at time (in sequence with no batching or pipelining). The

authors note:

This makes the implementation slightly easier without sacrificing the effectiveness of

the protocol for our purposes.

It would be unwise to use a more complex algorithm or implementation for performance reasons if

no application will ultimately reap the benefits.

Second, the performance of a single consensus group is fundamentally limited, since each op-

eration must involve more than half of the servers in the cluster. The best case throughput for a

consensus group cannot exceed twice that of a single server, since each server needs to process a

majority of commands. The only way to scale consensus to large clusters is to use more independent

consensus groups (see Chapter 2) and to minimize synchronization across groups.

Possible latency improvements are also limited, especially for datacenter networks. The best

case for latency is replicating directly from the client to the majority of the cluster nearest the client,

whereas in leader-based algorithms, the client replicates to the leader, then the leader replicates to

the nearest half of the other servers in the cluster. The possible improvement thus depends on the

geographical layout of the client and servers; the worst case latency can improve from circling the

globe twice per request to circling it just once.

Third, several important performance gains can be achieved without fundamentally changing

the algorithm:

• Most practical implementations of consensus employ some form of pipelining and/or batch-

ing of log entries. Chapter 10 discussed batching and pipelining in Raft, and Santos and

Schiper [100] analyzed trading off batching and pipelining in the context of Paxos. Unfortu-

nately, they suggest optimizing for throughput at the expense of latency, and their model does

not include writes to stable storage.

• The leader’s outbound network usage, which is typically the limiting factor in throughput for

leader-based algorithms, can also be reduced without fundamentally changing the algorithm.

For example, the leader can use chain replication [30, 110] (in which the leader replicates to

the first follower, which in turn replicates to the second, etc.) or network multicast to replicate

entries to its followers; all followers receive copies of the log entries, but the leader only has to

transmit each log entry once. Alternatively, the followers can replicate batches of commands

into each other’s memory, and the leader can then order these batches into the replicated log

without transmitting the full command data; S-Paxos [8] fleshed out the details for Paxos.

CHAPTER 11. RELATED WORK 164

Finally, many of the performance optimizations in this section have unfortunately been patented

in the US. We have tried to warn readers of patents that we are aware of, and we sincerely hope that

software patents will be reformed or abolished in the US soon (the Electronic Frontier Foundation

describes why [25]).

11.7.1 Reducing leader bottleneck

Many optimizations focus on reducing the leader as a performance bottleneck. As a single server,

the leader has limited resources and may be located inconveniently in wide-area deployments. Thus,

optimizations have the potential to:

• Increase throughput by using network links in a more balanced way;

• Decrease latency by avoiding the (possibly long) network hop to involve the leader; and

• More evenly balance load between the servers.

Unfortunately, most of these optimizations are in conflict with Raft’s strong leader approach.

Raft leverages its strong leader for understandability and reducing mechanism, and this key design

choice is at odds with reducing the leader’s involvement in normal operations. Thus, if Raft were

modified to support these optimizations, the end result would differ considerably from the Raft

algorithm, and it would probably be significantly harder to understand.

Rotating leader (Mencius)

In a US patent [56], Lamport et al. describe an idea to divide a replicated log such that different

servers act as leader for different log indexes. For example, leadership can be assigned round-robin

to all the servers in the cluster. Mencius [74] applies this idea to Paxos and works out many of the

details needed for a practical implementation. For example, servers in Mencius can efficiently skip

their turns if they have no client requests to propose.

Mencius can improve the cluster’s throughput since all servers can propose requests. It can also

improve latency when servers are separated by wide-area links, as clients can submit their requests

to a nearby server. However, its design also has two potential downsides for performance:

1. A slow server can delay state machines from applying further log entries, since it needs to

propose a value or skip its turn (or worse, another server must revoke its turn) in order to

make progress. This impacts latency but not throughput.

2. Similarly, any failed server can result in reduced performance until the cluster revokes its

assigned log entries. In contrast, a non-leader failure in Multi-Paxos does not usually affect

CHAPTER 11. RELATED WORK 165

performance.

We think Raft could be extended to support Mencius-like operation. However, it would add so

much complexity to Raft that the end result might hardly resemble Raft at all.

Offloading leadership burden to clients (Fast Paxos)

Fast Paxos [52] (covered by a US patent [53]) describes an approach to reducing the leader bot-

tleneck in which clients propose commands directly to the cluster servers, rather than submitting

them to the leader to propose. This is advantageous for latency when the client is located far from

the leader and the leader is far from the other servers. It also eliminates a network hop, which can

improve latency even if all the servers are located in a single datacenter.

To allow clients to propose requests directly, a leader first executes the first phase of Paxos on the

cluster, resolves any proposed but uncommitted log entries, and tells clients of its proposal number.

Then, using the leader’s proposal number, a client can directly propose a command to all servers in

the cluster. The client does not specify a log index with its command; instead, each server assigns

the command to its first unused log entry. If a single client proposes a command at a particular time,

the servers will typically agree on the log index for the command. If the client gets a fast quorum of

the servers to accept the command for the same log index, it is committed; a fast quorum typically

requires d3N /4e servers.

Practically speaking, a client often needs to learn the state machine’s output as a result of its

command execution; it is not always enough to know that the command is committed. This requires

not the client but some server to learn that the command was committed. Servers can send each

other their accept responses, along with the command that they accepted, to determine whether

commitment indeed occurred. Once a server learns that a command was committed, it can apply the

command (in log order), and return the result of its state machine to the client.

If two clients propose distinct values simultaneously, the command may not commit using a fast

quorum. Recovering from this situation can either be coordinated by the leader or uncoordinated. In

coordinated recovery, the leader selects one of the accepted values and initiates the second phase of

Paxos using a slow quorum, which typically requires bN /2c+1 servers. In uncoordinated recovery,

the servers independently try to choose the same value, and they try again using a fast quorum.

Fast Paxos can help reduce latency under low load, but if clients frequently conflict, any per-

formance improvements may be negated by the cost of recovery. Moreover, Fast Paxos is fairly

complex in its messaging pattern and use of two types of quorums, and it may not be desirable to

CHAPTER 11. RELATED WORK 166

move so much processing to the client. It might be possible to make Raft work similarly to Fast

Paxos; again, however, the end result would probably not resemble Raft very much.

Exploiting commutativity (Generalized and Egalitarian Paxos)

Generalized Paxos [51] and Egalitarian Paxos [80] both exploit commutativity (non-interference)

in state machine commands. The intuition is that, if commands A and B commute, then one state

machine can apply A then B, and another can apply B then A, and they will still arrive at the same

resulting states. To support this, state machines must identify which operations commute, and the

consensus algorithm uses this information to determine when conflicts occur. When conflicts do

not occur, the processing is quite efficient, but if commands that are proposed concurrently do not

commute with each other, the algorithms require an additional round of communication.

Generalized Paxos [51] (covered by a US patent [56]) extends Fast Paxos to avoid recovery

when operations commute. It is able to achieve the fast path performance of Fast Paxos even when

multiple clients are proposing commands, as long as those commands do not interfere.

Egalitarian Paxos [80] has clients send their commands to the nearest server, then any server

can commit a command with just one round of communication as long as other commands that are

proposed concurrently commute with it. It has a smaller fast quorum than Generalized Paxos by one

server.

Both Generalized and Egalitarian Paxos balance load well between servers, since no leader is

needed to commit commands when operations do not interfere. They are also able to achieve lower

latency than Raft in WAN settings, since they do not need to include the leader (they can involve

only the closest servers to the client). However, both of these protocols add significant complexity

to Paxos.

11.7.2 Reducing number of servers (witnesses)

There are several ways to reduce the number of servers involved in most operations without losing

fault tolerance; these are summarized in Table 11.2. The first, which works with all consensus algo-

rithms, is to simply replicate entries to a bare majority rather than the full cluster (called “thrifty”

in [80]). This halves the network load for the leader during normal operation, since it only has to

replicate entries to half the cluster (it can replicate the entries to the others during idle periods).

However, this optimization can result in delays when servers fail, as servers that will need to be-

come part of the quorum might have fallen far behind. This impacts Paxos the least, since the new

CHAPTER 11. RELATED WORK 167

replication servers state machines delay when server fails

Traditional consensus 5 5 no delay
Thrifty 5 3 no delay for out-of-order logs; replicate

missing entries for in-order logs
Harp/Cheap Paxos 3 + 2 3 no delay
Primary-backup 3 3 communicate with external system to

remove failed server

Table 11.2: Summary of approaches to reducing the number of servers involved in each consen-
sus decision. In the sample configurations shown, each approach can tolerate two server failures
with no possibility of data loss. The “servers” column shows the number of servers required;
the Harp/Cheap Paxos approaches need three fully capable servers and two additional smaller
servers. The “state machines” column shows the number of state machines that are nearly up-
to-date with the replicated state machine; these can be useful to service client requests. The
“delay when server fails” column describes delays that may arise when a single server fails.

server can accept later entries before accepting earlier ones; it impacts Viewstamped Replication,

Zab, and Raft more, since the new server’s log has to be brought entirely up-to-date before it can

accept new entries.

Harp [67] extends Viewstamped Replication to take this idea one step further: witnesses are

servers that only participate in voting but do not normally participate in log replication and do not

have state machines at all. When a server fails, a witness steps in to store log entries for that server

until it recovers or is replaced. Witnesses allow the cluster to make consensus decisions even when

some of the main servers have failed. As the resource requirements for witnesses are lower than

for normal servers, they can run on limited hardware or as a secondary process on other servers.

We think Raft could also support witnesses in a similar way. Cheap Paxos [57] (covered by a US

patent [58]) is similar to Harp, but claims to require even less powerful servers as witnesses.

Trading off recovery time even more, a primary-backup replication scheme removes a minority

of the cluster altogether (this is orthogonal to the replicated state machine vs. primary-copy distinc-

tion discussed in Section 11.6). This approach is used in Apache Kafka [93]. The primary replicates

log entries to all of the backups and waits for all the backups to acknowledge each entry before

committing it. If the primary fails, any of the backups’ logs is equally suitable to become the new

primary, but the old primary needs to be excluded from the cluster in case it returns. If a backup fails,

it too needs to be excluded from becoming an eligible primary in the future. The group can rely on

an external consensus service to select a new primary and exclude servers from becoming primary.

To restore its original replication factor after a failure, the primary can catch a new server up, then

CHAPTER 11. RELATED WORK 168

mark it in the external consensus service as eligible to become primary. In an n-server cluster, this

approach can recover from n − 1 failures (with the help of an external consensus service during

recovery), and it only needs to send n − 1 messages to replicate each log entry. However, it may

take longer to recover from failures, and similarly it is not able to mask stragglers (slow servers) as

well as consensus does.

11.7.3 Avoiding persistent storage writes

Many papers suggest using replication rather than stable storage for durability. For example, in

Viewstamped Replication Revisited, servers do not write log entries to stable storage. When a server

restarts, its log is not used for voting until it learns the current information (its disk is only used as

an optimization to avoid network transfers). The trade-off is that data loss is possible in catastrophic

events. For example, if a majority of the cluster were to restart simultaneously, the cluster would

have potentially lost entries and would not be able to form a new view. Raft could be extended in

similar ways to support disk-less operation, but we think the risk of availability or data loss usually

outweighs the benefits.

11.8 Correctness

The consensus community has primarily focused its correctness efforts on proofs of safety. Most of

the widely accepted consensus algorithms have been proven safe in some form, including single-

decree Paxos [48, 91, 55], Multi-Paxos [10, 101], EPaxos [79], and Zab [41]. We have only found

informal sketches for Viewstamped Replication [66].

There are various approaches to proofs. On one axis, proofs range from less formal to more

formal. Informal sketches are useful for building intuition but might overlook errors. For Raft, we

have developed a fairly detailed (semi-formal) proof and have also included informal sketches for

intuition. The most formal proofs are machine-checked; they are so precise that a computer program

can verify their correctness. These proofs are not always easy to understand, but they establish the

truth of the statements proven with complete certainty. Machine-checked proofs are not yet stan-

dard in distributed systems (they are more popular in, for example, the programming languages

community), and we struggled to create one ourselves. However, recent work argues for this ap-

proach [54, 101], and the EventML [101] authors have shown their approach can be feasible for

consensus by proving Multi-Paxos correct. Pairing machine-checked proofs with informal sketches

can get the best of both worlds, and we hope to see the distributed systems community move in that

CHAPTER 11. RELATED WORK 169

direction.

Proofs also range in how directly they apply to real-world systems. Some prove properties on

very simplified models; these can aid understanding but have limited direct value for the correctness

of complete systems. For example, real systems vary so much from single-decree Paxos that they

may not benefit much from its proofs. Other proofs operate on more complete specifications (e.g.,

the Raft proof presented in Appendix B and the proof for EPaxos [79]); real-world implementations

are closer to these specifications, so these proofs are closer to proving properties on real-world code.

Some proof systems can even generate working implementations, which eliminates the possibility of

errors in translation from the specification to the implementation (e.g., EventML [101]). However,

this approach has not been very popular in practice so far, perhaps because real-world systems have

additional needs, such as performance, that are harder to accommodate in the generated code.

We have not found many proofs of liveness or availability (nor have we contributed any for

Raft). These properties may be harder to formalize, but we hope to see a greater emphasis on this in

the future.

11.9 Understandability

Studies involving human factors are common in other areas of computer science, namely Human-

Computer Interaction (HCI). HCI researchers typically iterate on designs using empirical measure-

ments, using incremental results from the study to guide improvements to their designs. To make

this possible, the study must be relatively easy to repeat and relatively low in cost. A typical HCI

study asks participants to learn and perform a task using a user interface, which takes little prepa-

ration and may only require a few minutes per participant. In contrast, our primary goal was to

compare Raft and Paxos, not to iterate on Raft, and the cost of the Raft study made it difficult to

apply an iterative approach (we needed to prepare teaching materials and quizzes, and each partic-

ipant needed to invest several hours in the study). Now that we have shown that Raft is easier to

understand than Paxos, it may be feasible to do further iterative studies (A/B testing) to find better

variations of Raft or better variations of its explanation.

Side-stepping human factors altogether, NetComplex [18] proposed a “metric to quantify the

notion of algorithmic complexity in network system design”. The metric calculates the distributed

dependencies of state, where the complexity of each state variable is the sum of the complexity of

its dependencies. The paper also compares the complexity of two-phase commit and single-decree

Paxos according to this metric; as expected, it finds Paxos to be more complex.

CHAPTER 11. RELATED WORK 170

Clearly a formula for quantifying the complexity or understandability of an algorithm would be

very useful. However, we do not know whether the formula proposed in the NetComplex paper is the

right one. Many factors contribute to complexity, and their relative importance and the interactions

between them are not well understood. It is also not obvious how to apply the proposed formula

to the complete Raft algorithm, which is much larger than the examples given in the paper (but we

would be very interested in seeing the result).

Chapter 12

Conclusion

Our goal with this dissertation was to create a better foundation for learning consensus and building

replicated state machines. When we set out to learn consensus ourselves, we found the time and

effort required to understand existing algorithms was too high, and we worried that this burden might

be prohibitive for many students and practitioners. We were also left with significant design work

before we could build a complete and practical system using consensus. Thus, we designed Raft as

a more understandable and practical algorithm to serve as a better foundation for both learning and

systems building.

Several aspects of Raft’s design contribute to its understandability. At a high level, the algorithm

is decomposed differently from Paxos: it first elects a leader, then the leader manages the replicated

log. This decomposition allows reasoning about Raft’s different subproblems (leader election, log

replication, and safety) relatively independently, and having a strong leader helps minimize state

space complexity, as conflicts can only arise when leadership changes. Raft’s leader election in-

volves very little mechanism, relying on randomized timeouts to avoid and resolve contention. A

single round of RPCs produces a leader in the common case, and the voting rules guarantee that the

leader already has all committed entries in its log, allowing it to proceed directly with log replica-

tion. Raft’s log replication is also compact and simple to reason about, since it restricts the way logs

change over time and how they differ from each other.

Raft is well-suited for practical systems: it is described in enough detail to implement without

further refinement, it solves all the major problems in a complete system, and it is efficient. Raft

adopts a different architecture that is more applicable for building systems: consensus is often de-

fined as agreement on a single value, but in Raft we defined it in terms of a replicated log, as this is

needed to build a replicated state machine. Raft manages the replicated log efficiently by leveraging

171

CHAPTER 12. CONCLUSION 172

its leader; committing a request requires just one round of RPCs from the leader. Moreover, this

dissertation has mapped out the design space for all the major challenges in building a complete

system:

• Raft allows changing the cluster membership by adding or removing a single server at a

time. These operations preserve safety simply, since at least one server overlaps any majority

during the change. More complex changes in membership are implemented as a series of

single-server changes. Raft allows the cluster to continue operating normally during changes.

• Raft supports several ways to compact the log, including both snapshotting and incremental

approaches. Servers compact the committed portions of their logs independently; the main

idea involves transferring responsibilities for the start of the log from Raft itself to the server’s

state machine.

• Client interaction is essential for the overall system to work correctly. Raft provides lineariz-

ability for its client operations, and read-only requests can bypass the replicated log for per-

formance while still providing the same consistency guarantees.

This dissertation analyzed and evaluated various aspects of Raft, including understandability,

correctness, and the performance of leader election and log replication. The user study showed that,

after students learned Raft or Paxos, 33 of 43 of them were able to answer questions about Raft

better, and 33 of 41 stated they thought Raft would be easier to implement or explain than Paxos.

The proof of safety helps establish Raft’s correctness, and the formal specification is useful for

practitioners, as it eliminates any ambiguities in Raft’s description. The randomized leader election

algorithm was shown to work well in a variety of scenarios, typically electing a leader in less than

one second. Finally, measurements showed that the current version of LogCabin can sustain about

20,000 kilobyte-sized writes per second with a three-server cluster.

We are encouraged by Raft’s fast adoption in industry, which we believe stems from its under-

standability and its practicality. One person’s dilemma highlights both the problems that Raft set out

to solve and the benefits that it offers. Nate Hardt built a Paxos-based system at Scale Computing

and had been struggling over the past year to iron out the issues with his implementation. He is now

close to having an efficient, working system, but after discovering Raft, he is considering rebuilding

the system with Raft. He believes his team would be able to more readily help with a Raft imple-

mentation, since they can understand the algorithm more easily and learn about all of the aspects

of a complete system. Fortunately, others starting on new consensus projects have an easier choice.

CHAPTER 12. CONCLUSION 173

Many have already been inspired to build Raft systems just for the pleasure of learning, speaking to

its understandability; others are implementing Raft for production use, speaking to its practicality.

12.1 Lessons learned

I have learned many things during my years in graduate school, from how to build production-

quality systems to how to conduct research. In this section I briefly describe some of the important

lessons that I can pass on to other researchers and systems-builders.

12.1.1 On complexity

John once told me I had a “high tolerance for complexity.” At first I thought that was a compliment,

that I could handle things that lesser humans could not. Then I realized it was a criticism. Though

my ideas and code solved the problems they were meant to address, they introduced an entirely new

set of problems: they would be difficult to explain, learn, maintain, and extend.

With Raft, we were intentionally intolerant of complexity and put that to good use. We set out

to address the inherently complex problem of distributed consensus with the most understandable

possible solution. Although this required managing a large amount of complexity, it worked towards

minimizing that complexity for others.

Every system has a complexity budget: the system offers some benefits for its users, but if its

complexity outweighs these benefits, then the system is no longer worthwhile. Distributed consensus

is a problem that is fundamentally complex, and a large chunk of its complexity budget must be spent

just to arrive at a complete and working solution. I think many consensus algorithms and systems

before Raft have exhausted their complexity budgets, and this might explain why few consensus-

based systems are readily available. I hope Raft has changed this calculation and made these systems

worth building.

12.1.2 On bridging theory and practice

We started this work because we wanted to build a system using consensus and found that it was

surprisingly hard to do. This resonated with many others that had tried consensus and had given

up on it in the past, but its value was lost on many academics. By making things simple and obvi-

ous, Raft appears almost uninteresting to academics. The academic community has not considered

understandability per se to be an important contribution; they want novelty in some other dimension.

CHAPTER 12. CONCLUSION 174

Academia should be more open to work that bridges the gap between theory and practice. This

type of work may not bring any new functionality in theory, but it does give a larger number of stu-

dents and practitioners a new capability, or at least substantially reduces their burden. The question

of “Would I teach, use, and recommend this work?” is too often ignored, when, ultimately, it matters

to our field.

The task of bridging the gap often needs to come from academic research. In industry, deadlines

to ship products usually lead practitioners to ad hoc solutions that are just good enough to meet their

needs. They can point out challenges (as the Chubby authors did with Paxos [15]), but they cannot

usually invest the time needed to find the best solutions. With Raft, we weren’t content with good

enough, and we think that is what makes our work valuable. We explored all the design choices we

could think of; this took careful study at a depth that is difficult to accommodate in industry, but it

produced a valuable result that many others can benefit from.

12.1.3 On finding research problems

When I started graduate school, I did not know how to find interesting research problems to work on.

This seems silly to me now, as there are too many problems out there. There are various approaches

to finding them, but I have found this one to be effective:

• First, start building something. I do not think it matters much what this something is, as long

as you are motivated to build it. For example, you might choose to build an application you

would like to have or rewrite an existing project in a new programming language you would

like to learn.

• Second, pick a metric and optimize your system for it. For Raft, we set out to design the most

understandable algorithm. Other projects optimize for performance, security, correctness, us-

ability, or a number of other metrics.

The key to this approach is to ask, at every step of the way, what is the absolute best possible

way to maximize your metric? This inevitably leads to either discovering something new to learn,

or quite often, finding that no existing solution is quite good enough—a potential research project.

The problem then shifts from not having any problems to work on to having too many, and

the challenge becomes deciding which one(s) to choose. This can pose a difficult judgment call; I

suggest looking for projects that are conceptually interesting, are exciting to work on, and have the

potential for significant impact.

CHAPTER 12. CONCLUSION 175

12.2 Final comments

This dissertation aims to bridge the gap between theory and practice in distributed consensus. Much

of the prior academic work on distributed consensus has been theoretical in nature and difficult to

apply to building practical systems. Meanwhile, many of the real-world systems based on consensus

have been ad hoc in nature, where practitioners have stopped at solutions that were good enough

for their needs, and their implications and alternatives were not fully explored. In Raft, we have

thoroughly explored the design space for a complete consensus algorithm with a focus on under-

standability, and we have also built a complete consensus-based system in order to ensure that our

ideas are practical. We hope this will serve as a good foundation both for teaching consensus and

for building future systems.

Appendix A

User study materials

This appendix includes various materials used in the Raft user study (Chapter 7):

• Section A.1 contains the Raft quiz questions, answers, and grading rubric.

• Section A.2 contains the Paxos quiz questions, answers, and grading rubric.

• Section A.3 contains the survey and the open-ended comments and feedback received from

the participants.

• Section A.4 contains the summaries of the Raft and Paxos algorithms made available to par-

ticipants during the study.

A.1 Raft quiz

Grading note: Where points are taken away for incorrect information, every section of every ques-

tion still has a minimum of 0 points.

1. (4 points) Each figure below shows a possible log configuration for a Raft server (the contents

of log entries are not shown; just their indexes and terms). Considering each log in isolation,

could that log configuration occur in a proper implementation of Raft? If the answer is “no,”

explain why not.

(a)

176

APPENDIX A. USER STUDY MATERIALS 177

Answer: No: terms increase monotonically in a log.

Specifically, the leader that created entry (4,2) could only have received (3,3) from a

leader with current term ≥ 3, so its current term would also be ≥ 3. Then it could not

create (4,2).

(b)

Answer: Yes

(c)

Answer: Yes

(d)

Answer: No: logs cannot have holes.

Specifically, leaders only append to their logs, and the consistency check in Append-

Entries never matches a hole.

Grading: 4 points total

One point per part.

If the answer is yes, saying “yes” earns 1 point. Saying “no” earns no points. Any supporting

explanations are ignored.

If the answer is no, saying “no” earns half of the point, and a correct explanation earns the

other half. Not much supporting explanation is required. Saying “yes” earns no points, and

any accompanying explanation is ignored.

2. (6 points) The figure below shows the state of the logs in a cluster of 5 servers (the contents

of the entries are not shown). Which log entries may safely be applied to state machines?

Explain your answer.

APPENDIX A. USER STUDY MATERIALS 178

Answer: Entries (1,1) and (2,1) may be safely applied:

If an entry is not stored on a quorum, it cannot be applied safely. This is because this minority

can fail, and the other servers (which form a majority) can proceed with no knowledge of the

entry.

Thus, we need only consider entries (1,1), (2,1), (3,2), (4,2), (5,2).

We need to figure out which ones could be elected leader, and see if they could cause these

entries to be removed.

Server 2 can be elected leader because its log is at least as complete as S3, S4, and S5. It

could then cause servers to remove entries (3,2), (4,2), and (5,2), so those entries are not safe

to apply.

So now we’re left with entries (1,1), (2,1) as possibly safe to apply.

Servers 3 and 4 can’t be elected leader because their logs are not complete enough. Server 5

can be elected leader, but it contains (1,1) and (2,1).

Therefore, only entries (1,1) and (2,1) are safe to apply.

Grading: 6 points total

3 points for saying “entries (1,1) and (2,1)” or “entries 1 and 2” (since there is no ambiguity).

No partial credit is awarded for these 3 points, but responses with an incorrect answer may

still be awarded partial credit for the explanation.

3 points for the explanation:

+ 1 point for saying the entry must be stored on a quorum

+ 2 points for saying that server 2 may be elected leader, which threatens entries past index

2.

An answer that says “1 and 2 because entries from term 2 can’t be committed until one of

the entries from the leader’s term reaches a majority of servers” receives 4.5 points (we got

APPENDIX A. USER STUDY MATERIALS 179

3 answers like this; it’s correct but not clear whether the participants understood why).

The incorrect answer of “entries 1–5 because they are stored on a majority” gets 1 point.

The incorrect answer of “entries 1–6 because they are stored on a majority” gets 0 points

(entry 6 is not).

3. (10 points) Consider the figure below, which displays the logs in a cluster of 6 servers just

after a new leader has just been elected for term 7 (the contents of log entries are not shown;

just their indexes and terms). For each of the followers in the figure, could the given log

configuration occur in a properly functioning Raft system? If yes, describe how this could

happen; if no, explain why it could not happen.

Answer:

a) No. Entry (5,3) uniquely identifies a log prefix (by the AppendEntries consistency check),

but this follower has entry (5,3) and a different log prefix before it than the leader.

b) No. Entry (6,5) uniquely identifies a log prefix (by the AppendEntries consistency check),

but this follower has entry (6,5) and a different log prefix before it than the leader.

c) Yes. Since we can’t say much about the other servers in the cluster, this server could

have been leader in term 6 with a starting log of (1,1), (2,1) and could have written a

bunch of entries to its log and not communicated with our current leader of term 7. This

assumes that entries (3,3), (4,3), (5,3), and (6,5) were not committed in term 5, which is

possible.

d) No. Terms increase monotonically in a log. Specifically, the leader that created entry

(5,2) could only have received (4,3) from a leader with current term ≥ 3, so its current

term would also be ≥ 3. Then it could not create (5,2).

APPENDIX A. USER STUDY MATERIALS 180

e) Yes. For example, (e) is the leader for term 1 and commits entries (1,1) and (2,1), then

becomes partitioned from the other servers but continues processing client requests.

Grading: 10 points total

Two points per part:

+ 1 for the boolean,

+ 1 for a correct explanation.

If the boolean is incorrect, no points are awarded for the explanation.

If the boolean is correct, not much supporting explanation is required.

4. (5 points) Suppose that a hardware or software error corrupts the nextIndex value stored by

the leader for a particular follower. Could this compromise the safety of the system? Explain

your answer briefly.

Answer: No.

If the nextIndex value is too small, the leader will send extra AppendEntries requests. Each

will have no effect on the follower’s log (they will pass the consistency check but not conflict

with any entries in the follower’s log or provide any entries to the follower that the follower

didn’t already have), and the successful response will indicate to the leader that it should

increase its nextIndex.

If the nextIndex value is too large, the leader will also send extra AppendEntries requests. The

consistency check will fail on these, causing the follower to reject the request and the leader

to decrement nextIndex and retry.

Either way, this is safe behavior, as no critical state is modified in either case.

Grading: 5 points total

+ 1 point for saying “no”.

+ 2 points for explaining what happens if nextIndex is too small.

+ 2 points for explaining what happens if nextIndex is too large.

Answers that say a follower would truncate its log when nextIndex is too small receive -1

points, as that could result in a safety violation.

If the boolean is incorrect, partial credit may still be awarded for correct explanations.

5. (5 points) Suppose that you implemented Raft and deployed it with all servers in the same

datacenter. Now suppose that you were going to deploy the system with each server in a

different datacenter, spread over the world. What changes would you need to make, if any, in

the wide-area version of Raft compared to the single-datacenter version, and why?

APPENDIX A. USER STUDY MATERIALS 181

Answer: We’d need to set the election timeouts higher: the expected broadcast time is higher,

and the election timeout should be much higher than the broadcast time so that candidates

have a chance to complete an election before timing out again. The rest of the algorithm does

not require any changes, since it does not depend on timing.

Grading: 5 points total

For full credit, an answer needs to include increasing the election timeout and as justification

mention increased latency or some sort of livelock.

Answers that talk about “increasing timeouts” without specifically mentioning elections re-

ceive up to 3.5 points (this affects 4 answers).

Unnecessary or optional changes (performance improvements) are ignored if correctly iden-

tified as such.

Negative points are awarded for other changes identified as required.

6. (10 points) Each follower stores 3 pieces of information on its disk: its current term, its most

recent vote, and all of the log entries it has accepted.

(a) Suppose that the follower crashes, and when it restarts, its most recent vote has been

lost. Is it safe for the follower to rejoin the cluster (assuming no modifications to the

algorithm)? Explain your answer.

Answer: No. This would allow a server to vote twice in the same term, which would then

allow multiple leaders per term, which breaks just about everything.

For example, with 3 servers:

S1 acquires S1 and S2’s votes and becomes leader of term 2.

S2 restarts and forgets it voted in term 2.

S3 acquires S2 and S3’s votes and becomes the second leader of term 2.

Now S1 and S3 can commit distinct entries in term 2 with the same index and terms but

different values.

(b) Now suppose that the follower’s log is truncated during a crash, losing some of the entries

at the end. Is it safe for the follower to rejoin the cluster (assuming no modifications to

the algorithm)? Explain your answer.

Answer: No. This would allow a committed entry to not be stored on a quorum, which

would then allow some other entry to be committed for the same index.

For example, with 3 servers.

APPENDIX A. USER STUDY MATERIALS 182

S1 becomes leader in term 2 and appends index=1, term=2, value=X on itself and S2.

S1 sets its committedIndex to 1 and returns to the client that X is committed.

S2 restarts and loses the entry from its log.

S3 (with an empty log) becomes leader in term 3, since its empty log is at least as complete

as S2’s.

S3 appends index=1, term=3, value=Y on itself and S2.

S3 sets its committedIndex to 1 and returns to the client that Y is committed.

Grading: 10 points total

5 points per part:

+ 1 point for the boolean,

+ 4 points for a correct explanation (the detailed scenarios above are not required)

For full credit on part (a), answers needed to include that this would allow multiple leaders

to be elected for the same term, not just that a follower could vote twice.

If the boolean is incorrect, no points are awarded for the explanation.

7. (10 points) As described in the video, it’s possible for a leader to continue operating even

after other servers have decided that it crashed and elected a new leader. The new leader will

have contacted a majority of the cluster and updated their terms, so the old leader will step

down as soon as it communicates with any of these servers. However, in the meantime it

can continue to act as leader and issue requests to followers that have not yet been contacted

by the new leader; furthermore, clients may continue to send requests to the old leader. We

know that the old leader cannot commit any new log entries it receives after the election has

completed, since it would need to contact at least one of the servers in the electing majority

to do this. But, is it possible for an old leader to execute a successful AppendEntries RPC that

completes the commitment of an old log entry that was received before the election started?

If so, explain how this could happen, and discuss whether or not this will cause problems for

the Raft protocol. If this cannot happen, explain why.

Answer: Yes. This can only happen if the new leader also contains the entry being committed,

so it will not cause problems.

Here’s an example of this happening with 5 servers:

S1 with an empty log becomes leader for term 2 with votes S1, S2, and S3.

S1 completes appending index=1, term=2, value=X to itself and S2.

S2 with index=1, term=2, value=X in its log becomes leader for term 3 with votes S2, S4, S5.

APPENDIX A. USER STUDY MATERIALS 183

S1 completes appending index=1, term=2, value=X to S3.

At this point, S1 has completed commitment of index=1, term=2, value=X, even though it is

no longer the current leader.

This behavior is safe because any new leader must also contain the entry, and so it will

persist forever:

The entry must be stored on some server S that votes for the new leader L, and it must be

stored on S before S votes for that new leader. The log completeness check says that S may

only vote for L if:

L.lastLogTerm > S.lastLogTerm or

(L.lastLogTerm == S.lastLogTerm and L.lastLogIndex ≥ S.lastLogIndex)

If L is the first leader after S, we must be in the second case, and then L must contain every

entry that S has, including the one we’re worried about.

If L’ is the second leader after S, L’ could only have a larger last term than S if it received

entries from L. But L must have replicated the entry we’re worried about to L’ prior to repli-

cating any of its own entries to L’, so this is also safe.

And this argument holds inductively for all future leaders.

Grading: 10 points total

4 points for showing this is possible:

+ 1 point for saying “Yes, it is possible”

+ For the remaining 3 points, answers must include that the deposed leader completed an

AppendEntries request to one of the voters of the new leader before that server voted.

6 points for arguing that it is not a problem:

+ 1 point for saying “It’s not a problem.”

+ For the remaining 5 points, answers must include that because some voter must have the

entry, the log completeness check guarantees that the new leader must also have the entry.

No points awarded for saying this cannot happen.

Credit for the scenario may be awarded even if the answer argues that this is a problem for

Raft.

8. (10 points) During configuration changes, if the current leader is not in Cnew, it steps down

once the log entry for Cnew is committed. However, this means that there is a period of time

when the leader is not part of the cluster it’s leading (the current configuration entry stored on

APPENDIX A. USER STUDY MATERIALS 184

the leader is Cnew, which does not include the leader). Suppose the protocol were modified

so that the leader steps down as soon as it stores Cnew in its log, if Cnew doesn’t include the

leader. What’s the worst that could happen with this approach?

Answer: Depending on the interpretation of the algorithm, there are two possible correct

answers.

Answer 1 assumes an implementation wherein once a server is not part of its current config-

uration, it does not become candidate anymore. The problem is that another server in Cold

could then be elected as leader, append Cnew to its log, and immediately step down.

Worse yet, this could repeat for a majority of the servers in Cold. It couldn’t repeat more than

that because once a majority of Cold stores the Cnew entry, no server from Cold without this

entry could be elected due to the log completeness check (a majority of Cold, required for

Cold,new, would no longer grant its vote to this server).

After this, a server in Cnew would have to get elected, and the cluster would continue. So

the worst case is really just running through up to about |Cold|/2 extra elections and election

timeouts.

Answer 2 assumes a naı̈ve implementation that allows a server that is not part of its current

configuration to still become candidate. In this case, the worst thing that could happen is that

the leader gets elected again as soon as it steps down (its log is still complete), then steps

down again, then repeats infinitely.

Grading: 10 points total

For full credit, an answer needs to identify that a server not in Cnew can be elected, that this

can repeat, include a reasonable bound on this repetition, and mention that this causes an

availability or liveness problem.

A.2 Paxos quiz

Grading note: Where points are taken away for incorrect information, every section of every ques-

tion still has a minimum of 0 points.

1. (4 points) Each figure below shows a possible log configuration for a Multi-Paxos server (the

number in each log entry gives its acceptedProposal value). Considering each log in isolation,

could that log configuration occur in a proper implementation of Multi-Paxos?

APPENDIX A. USER STUDY MATERIALS 185

a)

Yes or No?

Answer: Yes

b)

Yes or No?

Answer: Yes

c)

Yes or No?

Answer: Yes

d)

Yes or No?

Answer: Yes

Grading: 1 point per boolean (no partial credit)

2. (6 points) In Basic Paxos, suppose that a cluster contains 5 servers and 3 of them have ac-

cepted proposal 5.1 with value X. Once this has happened, is it possible that any server in the

APPENDIX A. USER STUDY MATERIALS 186

cluster could accept a different value Y? Explain your answer.

Answer: Yes. If it’s S1, S2, and S3 that have accepted (5.1, X), other servers could still accept

Y if it has a stale proposal number.

For example, S4 could prepare 3.4 and discover no values. Then S1 could prepare 5.1 on

just S1, S2, S3. Then S1 could complete accepts on just S1, S2, S3. And S4 can still complete

accepts on S4 and S5 with (3.4, Y).

Grading: 6 points total

2 points for saying “Yes”, and 4 points for the accompanying explanation. The explanation

must indicate that Y’s proposal is concurrent with or numbered less than 5.1 (otherwise, −2

points).

The incorrect answer “No, because any new proposal must discover (5.1, X) in its prepare

phase” receives 2 points.

Other incorrect answers with “No” receive no credit.

3. (10 points) Suppose that a server has just decided to act as leader in Multi-Paxos, and that no

other servers are currently acting as leaders. Furthermore, assume that the server continues as

leader for a period of time, arranging for many commands to be chosen for log entries, and

that no other server attempts to act as leader during this period.

a) What is the lower bound on the number of rounds of Prepare RPCs that the server must

issue during this period? Explain your answer, and be as precise as possible.

Answer: The lower bound is 1 round of Prepare RPCs, if a quorum of Prepare responses

are returned right away that have noMoreAccepted=true.

b) What is the upper bound on the number of rounds of Prepare RPCs that the server must

issue during this period? Explain your answer, and be as precise as possible.

Answer: The upper bound is one round of Prepare RPCs for each slot that is not chosen

on the leader for which any acceptor has accepted any proposal. This can happen if

every time the leader issues a prepare for one of its unchosen slots, it discovers an

acceptor that has already accepted some value; then it needs to adopt this value for this

slot and continue trying with the next slot.

Grading: 10 points total

5 points per part

For part a:

+ 2 points for saying “1”

APPENDIX A. USER STUDY MATERIALS 187

+ 3 points for the accompanying explanation

The explanation must include some mention of noMoreAccepted or the concept behind it.

For part b:

+ 3 points for saying the number of entries a follower has accepted

+ 2 points for subtracting out the ones that are chosen on the leader

An answer which is lacking precision that says “the upper bound is arbitrarily large” but

which has a correct explanation as to why more than 1 is necessary receives 2 points.

Answers that just say “until noMoreAccepted is true for a majority” receive 2 points (true,

but they could have gotten this off the slide without understanding).

Answers that are O(1) or O(Len(leader’s log)) for part (b) are awarded no credit.

4. (5 points) When an acceptor is marking entries accepted using the firstUnchosenIndex pro-

vided by the proposer, it must first check the proposal number in the entries that it marks.

Suppose it skipped this check: describe a scenario where the system would misbehave.

Errata: The question should have read “marking entries chosen” instead of “marking entries

accepted”. The quizzes used in our study contained the error, which we did not notice until

grading the responses.

Answer: The misbehavior that can arise is a server marking a value as chosen when a dif-

ferent value has been chosen. This requires a minimum of 2 competing proposals, 3 servers,

and 2 log entries to show:

S1 completes a round of prepare for n=1.1, index=1 with S1, S2.

S1 completes only one accept for n=1.1, v=X, index=1 with S1 (itself).

S2 completes a round of prepare for n=2.2, index=1 with S2, S3 and gets back noMoreAc-

cepted=true from both.

S2 completes a round of accept for n=2.2, v=Y, index=1 with S2, S3.

S2 marks index 1 as chosen.

S2 completes a round of accept for n=2.2, v=Z, index=2, firstUnchosenIndex=2 with S1, S2,

and S3.

Here, S1 would have misbehaved by setting n=1.1, v=X as chosen and applying X to its state

machine. This is incorrect, since in fact Y was chosen.

Grading: 5 points total

Unfortunately, most of the answers were not as specific as we would have liked for the sce-

nario.

APPENDIX A. USER STUDY MATERIALS 188

Full credit required identifying that the previously accepted value was different from the cho-

sen value on the proposer, and not just that the proposal number was different. This helps

separate people that regurgitated the material from people that had some understanding of

why the algorithm is the way it is. Answers missing this component received up to 4 points

(typically 2–3), depending on how well they showed understanding.

Since we messed up the wording in the question, no points were taken off on this question for

confusing the words “accepted” and “chosen” in the answer (answers were read with these

words exchanged in any way possible to give the answer the maximum number of points).

5. (5 points) Suppose that the two parts of a proposal number (round number and unique server

id) were exchanged, so that the server id is in the high-order bits.

a) Would this compromise the safety of Paxos? Explain your answer briefly.

Answer: No, since safety only requires proposals to be uniquely numbered (for a given

index in Multi-Paxos). Because server IDs are unique to each server and round numbers

still monotonically increase, this uniqueness is preserved.

b) Would this compromise the liveness of Paxos? Explain your answer briefly.

Answer: Yes, for example, the server with the largest ID could issue a Prepare RPC to

every server in the cluster and then permanently fail. No other proposer would then be

able to make any progress, since the remaining servers’ minProposal values would be

too high for the remaining proposers.

Grading: 5 points total

+ 2 points for safety

+ 3 points for liveness

For safety, saying “no” is worth 1 point, and a correct explanation is worth 1 point. Not much

supporting explanation is required. Saying “yes” earns no points, and any accompanying

explanation is ignored.

For liveness, saying “yes” is worth 1 point, and a correct explanation is worth 2 points.

Saying “no” earns no points, and any accompanying explanation is ignored.

6. (10 points) Suppose that a proposer executes the Basic Paxos protocol with an initial value of

v1, but that it crashes at some (unknown) point during or after the execution of the protocol.

Suppose that the proposer restarts and reexecutes the protocol from the beginning with the

same proposal number used previously, but with a different initial value of v2. Is this safe?

Explain your answer.

APPENDIX A. USER STUDY MATERIALS 189

Answer: No. Different proposals must have distinct proposal numbers. Here’s an example of

something bad that can happen using 3 servers:

S1 completes Prepare(n=1.1) with S1, S2.

S1 completes Accept(n=1.1, v=v1) with S1.

S1 restarts.

S1 completes Prepare(n=1.1) with S2, S3 (and discovers no accepted proposals).

S1 completes Accept(n=1.1, v=v2) with S2, S3.

S1 responds to the client that v2 has been chosen.

S2 completes Prepare(n=2.2) with S1, S2 and gets back:

from S1: acceptedProposal=1.1, acceptedValue=v1,

from S2: acceptedProposal=1.1, acceptedValue=v2,

S2 chooses to use v1 arbitrarily.

S2 completes Accept(n=2.2, v=v1) with S1, S2, S3.

S2 responds to some client that v1 was chosen.

A different problem that can occur involves a request from before the crash being delivered

after the crash:

S1 completes Prepare(n=1.1) with S1, S2.

S1 completes Accept(n=1.1, v=v1) with S1.

S1 sends Accept(n=1.1, v=v1) to S2 and S3, but they don’t receive it yet.

S1 restarts.

S1 completes Prepare(n=1.1) with S2, S3 (and discovers no accepted proposals).

S1 completes Accept(n=1.1, v=v2) with S2, S3.

S1 responds to the client that v2 has been chosen.

Now S2 and S3 receive the Accept(n=1.1, v=v1) request and overwrite their acceptedValue

to be v1.

The state of the cluster is now that v1 is chosen, even though a client has been told that v2

was chosen.

Grading: 10 points total

2 points for saying “no”, and 8 points for a correct explanation

For full credit, answers needed to explain that v2’s prepare phase did not discover v1 and

include some violation of safety.

Saying “yes” earns no points, and any accompanying explanation is ignored.

APPENDIX A. USER STUDY MATERIALS 190

7. (10 points) In a successful Accept RPC the acceptor sets its minProposal to n (the proposal

number in the Accept RPC). Describe a scenario where this actually changes the value of

minProposal (i.e., minProposal isn’t already equal to n). Describe a scenario where the system

would behave incorrectly without this code.

Answer: Working backwards, we need a server to receive an Accept that did not receive

a Prepare, since otherwise its minProposal would be up to date. And for this to matter, a

subsequent Accept needs to incorrectly not be rejected.

Using Basic Paxos and 5 servers.

S1 completes Prepare(n=1.1) with S1, S2, S3 (and discovers no accepted proposals).

S5 completes Prepare(n=2.5) with S3, S4, S5 (and discovers no accepted proposals).

S5 completes Accept(n=2.5, v=X) with S2, S3, S5. This is where S2’s minProposal would be

to 2.5 upon processing the Accept request.

S5 returns to the client that X is chosen.

S1 completes Accept(n=1.1, v=Y) with S2. This would normally be rejected, but would be

accepted if S2’s minProposal was not updated during Accept.

S3 completes Prepare(n=3.3) with S1, S2, S4 (and discovers n=1.1, v=Y).

S3 completes Accept(n=3.3, v=Y) with S1, S2, S3, S4, S5.

S3 returns to a client that Y is chosen.

Grading: 10 points total

+ 4 points for the first three steps showing how minProposal can be set during Accept.

+ 6 points for showing how the system misbehaves. For full credit, this must include a safety

violation.

8. (10 points) Consider a configuration change in Multi-Paxos, where the old configuration con-

sists of servers 1, 2, and 3, and the new configuration consists of servers 3, 4, and 5. Suppose

that the new configuration has been chosen for entry N in the log, and entries N through N+α

(inclusive) have also been chosen. Suppose that at this point the old servers 1 and 2 are shut

down because they are not part of the new configuration. Describe a problem that this could

cause in the system.

Answer: This could cause a liveness problem for the new cluster because firstUnchosenIndex

on those servers may be less than N+α .

For example in the worst case, server 3 might have failed permanently, and servers 1 and 2

would have made no attempt to transfer any values to servers 4 and 5 (using just the algorithm

APPENDIX A. USER STUDY MATERIALS 191

presented in the lecture). Then, try as they might, servers 4 and 5 will never be able to learn

the chosen values for slots 1 through N+α-1 (inclusive), since they can’t communicate with

servers 1, 2, or 3. Server 4 and 5’s state machines would never be able to advance beyond

their initial state.

Grading: 10 points total

A complete answer must say that the new servers are missing chosen entries and dismiss

server 3 as the solution.

Answers received up to 7 points if they implied server 3 must have all information (it can fail).

Answers received up to 8 points if they implied server 3 having all information is sufficient (it

can fail).

No points are awarded for incorrectly saying there is no problem.

No points are awarded for incorrectly saying that some slots in the range 1 through N − 1

(inclusive) may not have been chosen. That’s because N through N +α (inclusive) chosen

implies 1 through N +α (inclusive) are chosen by the definition of α .

A.3 Survey

1. Please rate any prior exposure you’ve had to Paxos.

• I had never seen it before

• I had seen it before but didn’t remember it

• I had seen it before but remembered only a little bit

• I had seen it before and remembered quite a bit

• I had seen it before and consider myself an expert

Responses: Responses are presented in Figure 7.9.

2. Please rate any prior exposure you’ve had to Raft.

• I had never seen it before

• I had seen it before but didn’t remember it

• I had seen it before but remembered only a little bit

• I had seen it before and remembered quite a bit

• I had seen it before and consider myself an expert

Responses: No participants reported having seen Raft before.

APPENDIX A. USER STUDY MATERIALS 192

3. Do you think the video lectures were roughly equal in quality, given the nature of the material

being presented?

• Paxos lecture was much better

• Paxos lecture was somewhat better

• They were roughly equal

• Raft lecture was somewhat better

• Raft lecture was much better

Responses: Responses are presented in Figure 7.10.

4. Do you think the quizzes were roughly equal in terms of testing your understanding of the

material?

• Paxos questions were unfairly hard

• Paxos questions were somewhat harder

• They were roughly equal

• Raft questions were somewhat harder

• Raft questions were unfairly hard

Responses: Responses are presented in Figure 7.10.

5. Suppose you were working at a company and it is your job to implement a replicated state ma-

chine. Which algorithm would be easier to implement in a functioning, correct, and efficient

system?

• Paxos would be much easier

• Paxos would be somewhat easier

• They would be roughly equal

• Raft would be somewhat easier

• Raft would be much easier

Responses: Responses are presented in Figure 7.11.

6. Suppose you had to explain either Raft or Paxos to a CS graduate student who hadn’t seen

either one previously. Which would be easier to explain?

• Paxos would be much easier

• Paxos would be somewhat easier

• They would be roughly equal

APPENDIX A. USER STUDY MATERIALS 193

• Raft would be somewhat easier

• Raft would be much easier

Responses: Responses are presented in Figure 7.11.

7. Do you have any additional comments?

Responses: The participants’ responses are reproduced below in random order, exactly as

submitted (errors included):

• I was forced to go back and re-watch parts of the Paxos lecture in order to answer the

quiz questions. I could answer most of the Raft questions from memory.

• I started a bit late on watching the videos. Without as much time to fully absorb the

material before taking the quizzes, I left a couple of parts incomplete.

I liked the one-slide summary near the beginning of the Raft lecture.

• Both are super complex!

• Good job on the lecture videos.

• Raft might be simpler, but the lecture on it was much harder to understand. In particular,

the requirements for each step (leader election, or considering when an entry is com-

mitted) were incrementally built and scattered through the lecture, which made it really

hard for me to fit the whole thing together mentally. In other words, I got each chunk of

the protocol and why certain checks had to be there, but I had no ability to put the whole

thing together and get the big picture, which was what I had to do on the quiz, because

the quiz was asking me to synthesize and predict Raft’s behavior, and understand how

the checks (like on committing and leader elections) interacted with each other.

• I have the vague feeling raft and paxos are too muh alike. maybe even the same, but I

can’t tell because I don’t fully understand paxos.

• It appears that Raft is equivalent to Multi-Paxos, yet Multi has not been proven or im-

plemented? I’m a little confused how Paxos is used in practice.

• Cool idea, I think it’s what Paxos should have been.

• Raft felt easier that MultiPaxos. Reasoning about possible log states for Multi Paxos felt

tougher for me than Raft.

There were couple of minor things not quite clear to me. One is about an optimization,

when a leader tries to catch up the log on a follower (who is way behind) it goes one

APPENDIX A. USER STUDY MATERIALS 194

entry at a time till it finds a match. May be this process could be speeded up if the

follower responds with its last entry (or exchange multiple entries separated by some

distance so that the number of round trips can be reduced).

May be this sort of opt was left out for the sake of simplicity.

Second point was about Cnew+old (I assume that this is the union of machines in Cold

and Cnew). Also when a follower assumes the new configuration, and if he is not in it,

does he take himself off? We discussed the leader case in the lecture.

• I obviously noticed that Raft and Paxos are very similar - to the point that I feel like

Raft is actually paxos presented differently. But I definitely found Raft to be easier to

grasp conceptually, explain, and implement. Although I do think that if each piece in

Paxos is presented more strategically like Raft, the differences would become much less

apparent.

• The quizzes were too long. Could not complete in the time provided. Also, with just an

hr of lecture its difficult to answer the questions in the quiz, given that I have never seen

anything even close to this before. A set of examples apart from the video lecture would

have been helpful.

• Raft is much easier conceptually but I’m curious about how commonly and effectively

it is implemented. Paxos is more popular, so I would expect it to have more reliable im-

plementation. However, I hope Raft gains more popularity and becomes the mainstream

distributed systems consensus protocol.

• Paxos is eaiser to understand because it does not have any many details as Raft. But the

video of Paxos does not help to the questions as much as the video of Raft do.

• Ousterhout is a boss. Thanks for the lectures!

• Is it just me or is Raft far easier to understand, especially due to its leader-follower

nature? The only distributed decision there is leader election and that is easy, as com-

pared to Paxos where everything is a distributed decision and where logs can get messy

and complicated. Both are fine algorithms, though I would prefer Raft if I ever had to

use either (depending on real-world performance, at which Raft would presumably be

better).

• Just the last portion on configuration wasn’t too clear. Everything else was conceptually

easier.

APPENDIX A. USER STUDY MATERIALS 195

• I took the raft quiz first. After seeing how elegantly raft solved the consensus problem,

paxos approach seems to be filled with a lot of unnecessary complexity.

• Videos were a bit dry

A.4 Supporting materials

Figure A.1 shows the Raft algorithm summary made available to user study participants as

part of the Raft lecture slides. Figures A.2 through A.5 show the Paxos summary made avail-

able to participants as a separate document on the study web site.

APPENDIX A. USER STUDY MATERIALS 196

����������	
� ���������������������� �������

� ������������	
�����������������������������

�
���

�������

� ����������������������������� �	
����

� ��������������������������

���������

� ����������������������������������

� ���������������������

� ������������ ��� �	
��

� �������������������!����"� ������������#�����������

� ������������� �	
�������������������������������

����

� ���

��������������������������������

� $�����������������������������

����������

����������������������������������� ������#�����������

�"����������"�#���������������������	
��

����������� ���������������������������%��������&��� ���'�

���������#���(

�	��
�	� ����������� ������������������������������

����%���������������(

�	�� �����������

����������������

���� �������������"��������������#"�������

��
�� ����������������"�����������

�	����
 ����������������������

���������

����)���#"����������������������������

	��
������

���
�
����
 �������������������������

���� ���������*�� ���

�����	��
�� ����+�������������*�� �������������"

�����	���� ����������������*�� �������������"

���
����

���� ��

�	��������
 ���������������������������������

��������������

�� �������,�����������������������-����

%��������������������������������(

.� �������//������������������0�� ������������������������

�������������*�� ���

������������������������������������

���
���	��� ���

����)���#"��

���������������1�������������������#�����

	��
������

���� ������*�� ���

���
���
 ��������������������������������

�����	��
�� ����+������������"���������"� ����������

��������

�����	���� �����������2������+ ����"

��������� ���������������������%���"����������#���(

�	������
�� ���������"�)��������#���������

���
����

���� ���������������������������������������

������� �������������������������������"���������

����2������+ ��������2�����

��������������

�� ��������������3�����������

.� �������,�����������������������-����

4� ���������������������������������

5� ���������������������

6� ���������������������������7�����������������"����

����2������+ ���������������������2�����

8� ����+���

�+���"

9� ���������"�����������������������"� ����������

:� ������������������������������"����������������

	���������� ���

��
������������
�����

� ��������&�� ��+�����+ �������������������������+�;��

� ������������� ���"�������������� �	
��%�����#���(���������

��������1��

�������

� ���

���

� <���������������������+�=���+�����+ ���������������������

������������� �	
��������������������������������+�����+��

���������+�����+ �������������

� ���������������� ������#��������������������������"��

�����������+�����+ ��������"

� >��)�������������������������������������!����"� ���

�����������������������������"������������������������������

���!����"� ����������

� ����������������������� �������

�������

Figure A.1: Raft summary used in the user study. This is an earlier version of Figure 3.1.

APPENDIX A. USER STUDY MATERIALS 197

Paxos summary

Diego Ongaro and John Ousterhout

March 6, 2013

This document provides a terse summary of the Basic Paxos (single-decree) consensus protocol as well
as Multi-Paxos. It is intended as an accompaniment to a one-hour video lecture introducing Paxos, which
was developed as part of a user study comparing Paxos with the Raft consensus algorithm. Multi-Paxos
is not specified precisely in the literature; our goal here is to provide a fairly complete specification that
stays close to Leslie Lamport’s original description of Paxos in “The Part-Time Parliament.” The version of
Multi-Paxos described here has not been implemented or proven correct.

1 Basics

• proposal number (n) = (round number, server ID)
• T : a fixed timeout value used in the leader election algorithm
• α: concurrency limit in Multi-Paxos

1.1 Leader election algorithm

• Every T miliseconds, send an empty heartbeat message to every other server.
• A server acts as leader if it has not received a heartbeat message in the last 2T milliseconds from a

server with higher ID.

2 Basic Paxos (Single-decree)

2.1 Persistent state per server

• minProposal: the number of the smallest proposal this server will accept, or 0 if it has never received
a Prepare request

• acceptedProposal: the number of the last proposal the server has accepted, or 0 if it never accepted
any

• acceptedV alue: the value from the most recent proposal the server has accepted, or null if it has never
accepted a proposal

• maxRound: the largest round number the server has seen

2.2 Messages

2.2.1 Prepare (Phase 1)

Request fields:
• n: a new proposal number

Upon receiving a Prepare request, if n ≥ minProposal, the acceptor sets minProposal to n. The response
constitutes a promise to reject Accept messages with proposal numbers less than n in the future.
Response fields:
• acceptedProposal: the acceptor’s acceptedProposal
• acceptedV alue: the acceptor’s acceptedV alue

1Figure A.2: Paxos summary used in the user study, page 1 of 4.

APPENDIX A. USER STUDY MATERIALS 198

2.2.2 Accept (Phase 2)

Request fields:
• n: the same proposal number used in Prepare
• v: a value, either the highest numbered one from Prepare responses, or if none, then one from a client

request
Upon receiving an Accept request, if n ≥ minProposal, then:
• Set acceptedProposal = n
• Set acceptedV alue = v
• Set minProposal = n

Response fields:
• n: the acceptor’s minProposal

2.3 Proposer Algorithm: write(inputV alue)→ chosenV alue

1. Let n be a new proposal number (increment and persist maxRound).
2. Broadcast Prepare(n) requests to all acceptors.
3. Upon receiving Prepare responses (reply.acceptedProposal, reply.acceptedV alue) from a majority of

acceptors:
• Let v be set as follows: if the maximum reply.acceptedProposal in the replies isn’t 0, use its

corresponding reply.acceptedV alue. Otherwise, use inputV alue.
4. Broadcast Accept(n, v) requests.
5. Upon receiving an Accept response with (reply.n):

• If reply.n > n, set maxRound from n, and start over at step 1.
6. Wait until receiving Accept responses for n from a majority of acceptors.
7. Return v.

3 Multi-Paxos

3.1 Persistent state per acceptor

Each acceptor stores:
• lastLogIndex: the largest entry for which this server has accepted a proposal
• minProposal: the number of the smallest proposal this server will accept for any log entry, or 0 if it

has never received a Prepare request. This applies globally to all entries.
Each acceptor also stores a log, where each log entry i ∈ [1, lastLogIndex] has the following fields:
• acceptedProposal[i]: the number of the last proposal the server has accepted for this entry, or 0 if it

never accepted any, or ∞ if acceptedV alue[i] is known to be chosen
• acceptedV alue[i]: the value in the last proposal the server accepted for this entry, or null if it never

accepted any
Define firstUnchosenIndex as the smallest log index i > 0 for which acceptedProposal[i] <∞

3.2 Persistent state per proposer

• maxRound: the largest round number the proposer has seen

3.3 Soft (volatile) state per proposer

(I’m not doing a very strong separation here between the proposer and the acceptor. I allow proposers to
both read and write into acceptor state sometimes.)
• nextIndex: the index of the next entry to use for a client request
• prepared: True means there is no need to issue Prepare requests (a majority of acceptors has responded

to Prepare requests with noMoreAccepted true); initially false

2Figure A.3: Paxos summary used in the user study, page 2 of 4.

APPENDIX A. USER STUDY MATERIALS 199

3.4 Messages

3.4.1 Prepare (Phase 1)

Request fields:
• n: a new proposal number
• index: the log entry that the proposer is requesting information about

Upon receiving a Prepare request, if request.n ≥ minProposal, the acceptor sets minProposal to request.n.
The response constitutes a promise to reject Accept requests (for any log entry) with proposals numbered
less than request.n.
Response fields:
• acceptedProposal: the acceptor’s acceptedProposal[index]
• acceptedV alue: the acceptor’s acceptedV alue[index]
• noMoreAccepted: set to true if this acceptor has never accepted a value for a log entry with index

greater than index

3.4.2 Accept (Phase 2)

Request fields:
• n: the same proposal number used in the most recent Prepare
• index: identifies a log entry
• v: a value, either the highest numbered one from a Prepare response, or if none, then one from a client

request
• firstUnchosenIndex: the sender’s firstUnchosenIndex

Upon receiving an Accept request: if n ≥ minProposal, then:
• Set acceptedProposal[index] = n
• Set acceptedV alue[index] = v
• Set minProposal = n

For every index < request.firstUnchosenIndex, if acceptedProposal[index] = n, set acceptedProposal[index]
to ∞.
Response fields:
• n: the acceptor’s minProposal
• firstUnchosenIndex: the acceptor’s firstUnchosenIndex.

3.4.3 Success (Phase 3)

Request fields:
• index: identifies a log entry
• v: the chosen value for entry index

Upon receiving a Success request, set acceptedV alue[index] to v and acceptedProposal[index] =∞.
Response fields:
• firstUnchosenIndex: the acceptor’s firstUnchosenIndex.

When the sender receives the response, if reply.firstUnchosenIndex < firstUnchosenIndex then the
sender sends Success(index = reply.firstUnchosenIndex, value = acceptedV alue[reply.firstUnchosenIndex]).

3.5 Proposer Algorithm: write(inputV alue)→ bool

1. If not leader or not done with leader initialization, return false.
2. If prepared is true:

(a) Let index = nextIndex, increment nextIndex.
(b) Go to step 6.

3. Let index = firstUnchosenIndex and nextIndex = index+ 1.
4. Let n be a new proposal number (increment and persist maxRound)
5. Broadcast Prepare(n, index) requests to all acceptors.
6. Upon receiving Prepare responses (reply.acceptedProposal, reply.acceptedV alue, reply.noMoreAccepted)

from a majority of acceptors:

3Figure A.4: Paxos summary used in the user study, page 3 of 4.

APPENDIX A. USER STUDY MATERIALS 200

• Let v be set as follows: if the maximum reply.acceptedProposal in the replies isn’t 0, use its
corresponding reply.acceptedV alue. Otherwise, use inputV alue.
• If all acceptors in the majority responded with reply.noMoreAccepted, set prepared = true.

7. Broadcast Accept(index, n, v) requests to all acceptors.
8. Upon receiving an Accept response with (reply.n, reply.firstUnchosenIndex):

• If reply.n > n, set maxRound from reply.n. Set prepared = false. Go to step 1.
• If reply.firstUnchosenIndex ≤ lastLogIndex and
acceptedProposal[reply.firstUnchosenIndex] =∞,
then send Success(index = reply.firstUnchosenIndex, value = acceptedV alue[reply.firstUnchosenIndex]).

9. Upon receiving Accept responses for n from a majority of acceptors:
• Set acceptedProposal[index] =∞ and acceptedV alue[index] = v.

10. If v == inputV alue, return true.
11. Go to step 2.

4 Reconfiguration

• Configuration is a list of ids and addresses of servers, stored as special log entries
• Configuration for choosing entry i determined by latest configuration in log at entry i− α or below.
• α limits concurrency: can’t choose entry i+ α until entry i is chosen

4

Figure A.5: Paxos summary used in the user study, page 4 of 4.

Appendix B

Safety proof and formal specification

This appendix includes a formal specification and a proof of safety for the basic Raft algorithm

presented in Chapter 3. The specification and proof are introduced in Chapter 8.

The formal specification makes the information summarized in Figure 3.1 completely precise

using the TLA+ specification language [50]. It serves as the subject of the proof and is a useful

reference for implementing Raft.

The proof shows that the specification preserves the State Machine Safety property. The main

idea of the proof is summarized in Section 3.6.3, but the detailed proof is much more precise. We

found the proof useful in understanding Raft’s safety at a deeper level, and others may find value

in this as well. However, the proof is fairly long and difficult for humans to verify and maintain;

we believe it to be basically correct, but it might include errors or omissions. At this scale, only a

machine-checked proof could definitively be error-free.

B.1 Conventions

The specification uses the syntax and semantics of the TLA+ language version 2 [50]. The proof

uses the same syntax and semantics but with the following minor allowances for convenience:

• As in TLA+, foo ′ has a specific meaning: the value of variable foo in the next state of the

system.

• Define 〈index , term〉 ∈ log iff

Len(log)≥ index ∧ log [index].term = term .

• The symbol ‖ is used for concatenation of logs and entries.

201

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 202

• Values in log entries are not included, since a value is attached to a particular 〈index , term〉,
and those uniquely identify a log entry.

B.2 Specification

This section provides a complete, formal description of the Raft algorithm. A copy of the TLA+

source file can is available at [87].

1 MODULE raft

2 This is the formal specification for the Raft consensus algorithm.

3 It was last modified on July 6, 2014.

5 EXTENDS Naturals, FiniteSets, Sequences, TLC

7 The set of server IDs

8 CONSTANTS Server

10 The set of requests that can go into the log

11 CONSTANTS Value

13 Server states.

14 CONSTANTS Follower , Candidate, Leader

16 A reserved value.

17 CONSTANTS Nil

19 Message types:

20 CONSTANTS RequestVoteRequest , RequestVoteResponse,

21 AppendEntriesRequest , AppendEntriesResponse

23

24 Global variables

26 A bag of records representing requests and responses sent from one server

27 to another. TLAPS doesn’t support the Bags module, so this is a function

28 mapping Message to Nat .

29 VARIABLE messages

31 A history variable used in the proof. This would not be present in an

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 203

32 implementation.

33 Keeps track of successful elections, including the initial logs of the

34 leader and voters’ logs. Set of functions containing various things about

35 successful elections (see BecomeLeader).

36 VARIABLE elections

38 A history variable used in the proof. This would not be present in an

39 implementation.

40 Keeps track of every log ever in the system (set of logs).

41 VARIABLE allLogs

43

44 The following variables are all per server (functions with domain Server).

46 The server’s term number.

47 VARIABLE currentTerm

48 The server’s state (Follower, Candidate , or Leader).

49 VARIABLE state

50 The candidate the server voted for in its current term, or

51 Nil if it hasn’t voted for any.

52 VARIABLE votedFor

53 serverVars
∆

= 〈currentTerm, state, votedFor〉

55 A Sequence of log entries. The index into this sequence is the index of the

56 log entry. Unfortunately, the Sequence module defines Head(s) as the entry

57 with index 1, so be careful not to use that!

58 VARIABLE log

59 The index of the latest entry in the log the state machine may apply.

60 VARIABLE commitIndex

61 logVars
∆

= 〈log , commitIndex 〉

63 The following variables are used only on candidates:

64 The set of servers from which the candidate has received a RequestVote

65 response in its currentTerm .

66 VARIABLE votesResponded

67 The set of servers from which the candidate has received a vote in its

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 204

68 currentTerm .

69 VARIABLE votesGranted

70 A history variable used in the proof. This would not be present in an

71 implementation.

72 Function from each server that voted for this candidate in its currentTerm

73 to that voter’s log .

74 VARIABLE voterLog

75 candidateVars
∆

= 〈votesResponded , votesGranted , voterLog〉

77 The following variables are used only on leaders:

78 The next entry to send to each follower.

79 VARIABLE nextIndex

80 The latest entry that each follower has acknowledged is the same as the

81 leader’s. This is used to calculate commitIndex on the leader.

82 VARIABLE matchIndex

83 leaderVars
∆

= 〈nextIndex , matchIndex , elections〉

85 End of per server variables.

86

88 All variables; used for stuttering (asserting state hasn’t changed).

89 vars
∆

= 〈messages, allLogs, serverVars, candidateVars, leaderVars, logVars〉

91

92 Helpers

94 The set of all quorums. This just calculates simple majorities, but the only

95 important property is that every quorum overlaps with every other.

96 Quorum
∆

= {i ∈ SUBSET (Server) : Cardinality(i)∗2 > Cardinality(Server)}

98 The term of the last entry in a log , or 0 if the log is empty.

99 LastTerm(xlog)
∆

= IF Len(xlog) = 0 THEN 0 ELSE xlog [Len(xlog)].term

101 Helper for Send and Reply . Given a message m and bag of messages, return a

102 new bag of messages with one more m in it.

103 WithMessage(m, msgs)
∆

=

104 IF m ∈ DOMAIN msgs THEN

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 205

105 [msgs EXCEPT ! [m] = msgs[m]+1]

106 ELSE

107 msgs @@(m :> 1)

109 Helper for Discard and Reply . Given a message m and bag of messages, return

110 a new bag of messages with one less m in it.

111 WithoutMessage(m, msgs)
∆

=

112 IF m ∈ DOMAIN msgs THEN

113 [msgs EXCEPT ! [m] = msgs[m]−1]

114 ELSE

115 msgs

117 Add a message to the bag of messages.

118 Send(m)
∆

= messages ′ = WithMessage(m, messages)

120 Remove a message from the bag of messages. Used when a server is done

121 processing a message.

122 Discard(m)
∆

= messages ′ = WithoutMessage(m, messages)

124 Combination of Send and Discard

125 Reply(response, request)
∆

=

126 messages ′ = WithoutMessage(request , WithMessage(response, messages))

128 Return the minimum value from a set, or undefined if the set is empty.

129 Min(s)
∆

= CHOOSE x ∈ s : ∀y ∈ s : x ≤ y

130 Return the maximum value from a set, or undefined if the set is empty.

131 Max (s)
∆

= CHOOSE x ∈ s : ∀y ∈ s : x ≥ y

133

134 Define initial values for all variables

136 InitHistoryVars
∆

= ∧ elections = {}
137 ∧allLogs = {}
138 ∧ voterLog = [i ∈ Server 7→ [j ∈ {} 7→ 〈〉]]
139 InitServerVars

∆

= ∧ currentTerm = [i ∈ Server 7→ 1]

140 ∧ state = [i ∈ Server 7→ Follower]

141 ∧ votedFor = [i ∈ Server 7→Nil]

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 206

142 InitCandidateVars
∆

= ∧ votesResponded = [i ∈ Server 7→ {}]
143 ∧ votesGranted = [i ∈ Server 7→ {}]
144 The values nextIndex [i][i] and matchIndex [i][i] are never read, since the

145 leader does not send itself messages. It’s still easier to include these

146 in the functions.

147 InitLeaderVars
∆

= ∧nextIndex = [i ∈ Server 7→ [j ∈ Server 7→ 1]]

148 ∧matchIndex = [i ∈ Server 7→ [j ∈ Server 7→ 0]]

149 InitLogVars
∆

= ∧ log = [i ∈ Server 7→ 〈〉]
150 ∧ commitIndex = [i ∈ Server 7→ 0]

151 Init
∆

= ∧messages = [m ∈ {} 7→ 0]

152 ∧ InitHistoryVars

153 ∧ InitServerVars

154 ∧ InitCandidateVars

155 ∧ InitLeaderVars

156 ∧ InitLogVars

158

159 Define state transitions

161 Server i restarts from stable storage.

162 It loses everything but its currentTerm , votedFor , and log .

163 Restart(i)
∆

=

164 ∧ state ′ = [state EXCEPT ! [i] = Follower]

165 ∧ votesResponded ′ = [votesResponded EXCEPT ! [i] = {}]
166 ∧ votesGranted ′ = [votesGranted EXCEPT ! [i] = {}]
167 ∧ voterLog ′ = [voterLog EXCEPT ! [i] = [j ∈ {} 7→ 〈〉]]
168 ∧ nextIndex ′ = [nextIndex EXCEPT ! [i] = [j ∈ Server 7→ 1]]

169 ∧ matchIndex ′ = [matchIndex EXCEPT ! [i] = [j ∈ Server 7→ 0]]

170 ∧ commitIndex ′ = [commitIndex EXCEPT ! [i] = 0]

171 ∧ UNCHANGED 〈messages, currentTerm, votedFor , log , elections〉

173 Server i times out and starts a new election.

174 Timeout(i)
∆

= ∧ state[i] ∈ {Follower , Candidate}
175 ∧ state ′ = [state EXCEPT ! [i] = Candidate]

176 ∧ currentTerm ′ = [currentTerm EXCEPT ! [i] = currentTerm[i]+1]

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 207

177 Most implementations would probably just set the local vote

178 atomically, but messaging localhost for it is weaker.

179 ∧ votedFor ′ = [votedFor EXCEPT ! [i] = Nil]

180 ∧ votesResponded ′ = [votesResponded EXCEPT ! [i] = {}]
181 ∧ votesGranted ′ = [votesGranted EXCEPT ! [i] = {}]
182 ∧ voterLog ′ = [voterLog EXCEPT ! [i] = [j ∈ {} 7→ 〈〉]]
183 ∧UNCHANGED 〈messages, leaderVars, logVars〉

185 Candidate i sends j a RequestVote request.

186 RequestVote(i , j)
∆

=

187 ∧ state[i] = Candidate

188 ∧ j /∈ votesResponded [i]

189 ∧Send([mtype 7→ RequestVoteRequest ,

190 mterm 7→ currentTerm[i],

191 mlastLogTerm 7→ LastTerm(log [i]),

192 mlastLogIndex 7→ Len(log [i]),

193 msource 7→ i ,

194 mdest 7→ j])

195 ∧UNCHANGED 〈serverVars, candidateVars, leaderVars, logVars〉

197 Leader i sends j an AppendEntries request containing up to 1 entry.

198 While implementations may want to send more than 1 at a time, this spec uses

199 just 1 because it minimizes atomic regions without loss of generality.

200 AppendEntries(i , j)
∆

=

201 ∧ i 6= j

202 ∧ state[i] = Leader

203 ∧ LET prevLogIndex
∆

= nextIndex [i][j]−1

204 prevLogTerm
∆

= IF prevLogIndex > 0 THEN

205 log [i][prevLogIndex].term

206 ELSE

207 0

208 Send up to 1 entry, constrained by the end of the log .

209 lastEntry
∆

= Min({Len(log [i]), nextIndex [i][j]+1})
210 entries

∆

= SubSeq(log [i], nextIndex [i][j], lastEntry)

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 208

211 IN Send([mtype 7→AppendEntriesRequest ,

212 mterm 7→ currentTerm[i],

213 mprevLogIndex 7→ prevLogIndex ,

214 mprevLogTerm 7→ prevLogTerm,

215 mentries 7→ entries,

216 mlog is used as a history variable for the proof.

217 It would not exist in a real implementation.

218 mlog 7→ log [i],

219 mcommitIndex 7→Min({commitIndex [i], lastEntry}),
220 msource 7→ i ,

221 mdest 7→ j])

222 ∧UNCHANGED 〈serverVars, candidateVars, leaderVars, logVars〉

224 Candidate i transitions to leader.

225 BecomeLeader(i)
∆

=

226 ∧ state[i] = Candidate

227 ∧ votesGranted [i] ∈ Quorum

228 ∧ state ′ = [state EXCEPT ! [i] = Leader]

229 ∧nextIndex ′ = [nextIndex EXCEPT ! [i] =

230 [j ∈ Server 7→ Len(log [i])+1]]

231 ∧matchIndex ′ = [matchIndex EXCEPT ! [i] =

232 [j ∈ Server 7→ 0]]

233 ∧ elections ′ = elections ∪
234 {[eterm 7→ currentTerm[i],

235 eleader 7→ i ,

236 elog 7→ log [i],

237 evotes 7→ votesGranted [i],

238 evoterLog 7→ voterLog [i]]}
239 ∧UNCHANGED 〈messages, currentTerm, votedFor , candidateVars, logVars〉

241 Leader i receives a client request to add v to the log .

242 ClientRequest(i , v)
∆

=

243 ∧ state[i] = Leader

244 ∧ LET entry
∆

= [term 7→ currentTerm[i],

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 209

245 value 7→ v]

246 newLog
∆

= Append(log [i], entry)

247 IN log ′ = [log EXCEPT ! [i] = newLog]

248 ∧UNCHANGED 〈messages, serverVars, candidateVars,

249 leaderVars, commitIndex 〉

251 Leader i advances its commitIndex .

252 This is done as a separate step from handling AppendEntries responses,

253 in part to minimize atomic regions, and in part so that leaders of

254 single-server clusters are able to mark entries committed.

255 AdvanceCommitIndex (i)
∆

=

256 ∧ state[i] = Leader

257 ∧ LET The set of servers that agree up through index.

258 Agree(index)
∆

= {i}∪{k ∈ Server :

259 matchIndex ′[i][k]≥ index}
260 The maximum indexes for which a quorum agrees

261 agreeIndexes
∆

= {index ∈ 1 . . Len(log [i]) :

262 Agree(index) ∈ Quorum}
263 New value for commitIndex ′[i]

264 newCommitIndex
∆

=

265 IF ∧agreeIndexes 6= {}
266 ∧ log [i][Max (agreeIndexes)].term = currentTerm[i]

267 THEN

268 Max (agreeIndexes)

269 ELSE

270 commitIndex [i]

271 IN commitIndex ′ = [commitIndex EXCEPT ! [i] = newCommitIndex]

272 ∧UNCHANGED 〈messages, serverVars, candidateVars, leaderVars, log〉

274

275 Message handlers

276 i = recipient, j = sender, m = message

278 Server i receives a RequestVote request from server j with

279 m.mterm ≤ currentTerm[i].

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 210

280 HandleRequestVoteRequest(i , j , m)
∆

=

281 LET logOk
∆

= ∨m.mlastLogTerm > LastTerm(log [i])

282 ∨ ∧m.mlastLogTerm = LastTerm(log [i])

283 ∧m.mlastLogIndex ≥ Len(log [i])

284 grant
∆

= ∧m.mterm = currentTerm[i]

285 ∧ logOk

286 ∧ votedFor [i] ∈ {Nil , j}
287 IN ∧m.mterm ≤ currentTerm[i]

288 ∧ ∨ grant ∧ votedFor ′ = [votedFor EXCEPT ! [i] = j]

289 ∨¬grant ∧UNCHANGED votedFor

290 ∧Reply([mtype 7→ RequestVoteResponse,

291 mterm 7→ currentTerm[i],

292 mvoteGranted 7→ grant ,

293 mlog is used just for the elections history variable for

294 the proof. It would not exist in a real implementation.

295 mlog 7→ log [i],

296 msource 7→ i ,

297 mdest 7→ j],

298 m)

299 ∧UNCHANGED 〈state, currentTerm, candidateVars, leaderVars, logVars〉

301 Server i receives a RequestVote response from server j with

302 m.mterm = currentTerm[i].

303 HandleRequestVoteResponse(i , j , m)
∆

=

304 This tallies votes even when the current state is not Candidate , but

305 they won’t be looked at, so it doesn’t matter.

306 ∧m.mterm = currentTerm[i]

307 ∧ votesResponded ′ = [votesResponded EXCEPT ! [i] =

308 votesResponded [i]∪{j}]
309 ∧ ∨ ∧m.mvoteGranted

310 ∧ votesGranted ′ = [votesGranted EXCEPT ! [i] =

311 votesGranted [i]∪{j}]
312 ∧ voterLog ′ = [voterLog EXCEPT ! [i] =

313 voterLog [i]@@(j :> m.mlog)]

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 211

314 ∨ ∧¬m.mvoteGranted

315 ∧UNCHANGED 〈votesGranted , voterLog〉
316 ∧Discard(m)

317 ∧UNCHANGED 〈serverVars, votedFor , leaderVars, logVars〉

319 Server i receives an AppendEntries request from server j with

320 m.mterm ≤ currentTerm[i]. This just handles m.entries of length 0 or 1, but

321 implementations could safely accept more by treating them the same as

322 multiple independent requests of 1 entry.

323 HandleAppendEntriesRequest(i , j , m)
∆

=

324 LET logOk
∆

= ∨m.mprevLogIndex = 0

325 ∨ ∧m.mprevLogIndex > 0

326 ∧m.mprevLogIndex ≤ Len(log [i])

327 ∧m.mprevLogTerm = log [i][m.mprevLogIndex].term

328 IN ∧m.mterm ≤ currentTerm[i]

329 ∧ ∨ ∧ reject request

330 ∨m.mterm < currentTerm[i]

331 ∨ ∧m.mterm = currentTerm[i]

332 ∧ state[i] = Follower

333 ∧¬logOk

334 ∧Reply([mtype 7→AppendEntriesResponse,

335 mterm 7→ currentTerm[i],

336 msuccess 7→ FALSE,

337 mmatchIndex 7→ 0,

338 msource 7→ i ,

339 mdest 7→ j],

340 m)

341 ∧UNCHANGED 〈serverVars, logVars〉
342 ∨ return to follower state

343 ∧m.mterm = currentTerm[i]

344 ∧ state[i] = Candidate

345 ∧ state ′ = [state EXCEPT ! [i] = Follower]

346 ∧UNCHANGED 〈currentTerm, votedFor , logVars, messages〉
347 ∨ accept request

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 212

348 ∧m.mterm = currentTerm[i]

349 ∧ state[i] = Follower

350 ∧ logOk

351 ∧ LET index
∆

= m.mprevLogIndex +1

352 IN ∨ already done with request

353 ∧ ∨m.mentries = 〈〉
354 ∨ ∧Len(log [i])≥ index

355 ∧ log [i][index].term = m.mentries[1].term

356 This could make our commitIndex decrease (for

357 example if we process an old, duplicated request),

358 but that doesn’t really affect anything.

359 ∧ commitIndex ′ = [commitIndex EXCEPT ! [i] =

360 m.mcommitIndex]

361 ∧Reply([mtype 7→AppendEntriesResponse,

362 mterm 7→ currentTerm[i],

363 msuccess 7→ TRUE,

364 mmatchIndex 7→m.mprevLogIndex +

365 Len(m.mentries),

366 msource 7→ i ,

367 mdest 7→ j],

368 m)

369 ∧UNCHANGED 〈serverVars, logVars〉
370 ∨ conflict: remove 1 entry

371 ∧m.mentries 6= 〈〉
372 ∧Len(log [i])≥ index

373 ∧ log [i][index].term 6= m.mentries[1].term

374 ∧ LET new
∆

= [index2 ∈ 1 . . (Len(log [i])−1) 7→
375 log [i][index2]]

376 IN log ′ = [log EXCEPT ! [i] = new]

377 ∧UNCHANGED 〈serverVars, commitIndex , messages〉
378 ∨ no conflict: append entry

379 ∧m.mentries 6= 〈〉
380 ∧Len(log [i]) = m.mprevLogIndex

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 213

381 ∧ log ′ = [log EXCEPT ! [i] =

382 Append(log [i], m.mentries[1])]

383 ∧UNCHANGED 〈serverVars, commitIndex , messages〉
384 ∧UNCHANGED 〈candidateVars, leaderVars〉

386 Server i receives an AppendEntries response from server j with

387 m.mterm = currentTerm[i].

388 HandleAppendEntriesResponse(i , j , m)
∆

=

389 ∧m.mterm = currentTerm[i]

390 ∧ ∨ ∧m.msuccess successful

391 ∧nextIndex ′ = [nextIndex EXCEPT ! [i][j] = m.mmatchIndex +1]

392 ∧matchIndex ′ = [matchIndex EXCEPT ! [i][j] = m.mmatchIndex]

393 ∨ ∧¬m.msuccess not successful

394 ∧nextIndex ′ = [nextIndex EXCEPT ! [i][j] =

395 Max ({nextIndex [i][j]−1, 1})]
396 ∧UNCHANGED 〈matchIndex 〉
397 ∧Discard(m)

398 ∧UNCHANGED 〈serverVars, candidateVars, logVars, elections〉

400 Any RPC with a newer term causes the recipient to advance its term first.

401 UpdateTerm(i , j , m)
∆

=

402 ∧m.mterm > currentTerm[i]

403 ∧ currentTerm ′ = [currentTerm EXCEPT ! [i] = m.mterm]

404 ∧ state ′ = [state EXCEPT ! [i] = Follower]

405 ∧ votedFor ′ = [votedFor EXCEPT ! [i] = Nil]

406 messages is unchanged so m can be processed further.

407 ∧UNCHANGED 〈messages, candidateVars, leaderVars, logVars〉

409 Responses with stale terms are ignored.

410 DropStaleResponse(i , j , m)
∆

=

411 ∧m.mterm < currentTerm[i]

412 ∧Discard(m)

413 ∧UNCHANGED 〈serverVars, candidateVars, leaderVars, logVars〉

415 Receive a message.

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 214

416 Receive(m)
∆

=

417 LET i
∆

= m.mdest

418 j
∆

= m.msource

419 IN Any RPC with a newer term causes the recipient to advance

420 its term first. Responses with stale terms are ignored.

421 ∨UpdateTerm(i , j , m)

422 ∨ ∧m.mtype = RequestVoteRequest

423 ∧HandleRequestVoteRequest(i , j , m)

424 ∨ ∧m.mtype = RequestVoteResponse

425 ∧ ∨DropStaleResponse(i , j , m)

426 ∨HandleRequestVoteResponse(i , j , m)

427 ∨ ∧m.mtype = AppendEntriesRequest

428 ∧HandleAppendEntriesRequest(i , j , m)

429 ∨ ∧m.mtype = AppendEntriesResponse

430 ∧ ∨DropStaleResponse(i , j , m)

431 ∨HandleAppendEntriesResponse(i , j , m)

433 End of message handlers.

434

435 Network state transitions

437 The network duplicates a message

438 DuplicateMessage(m)
∆

=

439 ∧Send(m)

440 ∧UNCHANGED 〈serverVars, candidateVars, leaderVars, logVars〉

442 The network drops a message

443 DropMessage(m)
∆

=

444 ∧Discard(m)

445 ∧UNCHANGED 〈serverVars, candidateVars, leaderVars, logVars〉

447

448 Defines how the variables may transition.

449 Next
∆

= ∧ ∨∃ i ∈ Server : Restart(i)

450 ∨∃ i ∈ Server : Timeout(i)

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 215

451 ∨∃ i , j ∈ Server : RequestVote(i , j)

452 ∨∃ i ∈ Server : BecomeLeader(i)

453 ∨∃ i ∈ Server , v ∈ Value : ClientRequest(i , v)

454 ∨∃ i ∈ Server : AdvanceCommitIndex (i)

455 ∨∃ i , j ∈ Server : AppendEntries(i , j)

456 ∨∃m ∈ DOMAIN messages : Receive(m)

457 ∨∃m ∈ DOMAIN messages : DuplicateMessage(m)

458 ∨∃m ∈ DOMAIN messages : DropMessage(m)

459 History variable that tracks every log ever:

460 ∧allLogs ′ = allLogs ∪{log [i] : i ∈ Server}

462 The specification must start with the initial state and transition according

463 to Next .

464 Spec
∆

= Init ∧2[Next]vars

466

B.3 Proof

Lemma 1. Each server’s currentTerm monotonically increases:

∀ i ∈ Server :

currentTerm[i]≤ currentTerm ′[i]

Proof. This follows immediately from the specification.

Lemma 2. There is at most one leader per term:

∀ e, f ∈ elections :

e.eterm = f .eterm⇒ e.eleader = f .eleader

This is the Election Safety property of Figure 3.2.

Sketch. It takes votes from a quorum to become leader, voters may only vote once per term, and

any two quorums overlap.

Proof.

1. Consider two elections, e and f , both members of elections , where e.eterm = f .eterm .

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 216

2. e.evotes ∈ Quroum and f .evotes ∈ Quorum , since this is a necessary condition for mem-

bers of elections .

3. Let voter be an arbitrary member of e.evotes ∩ f .evotes . Such a member must exist since

any two quorums overlap.

4. Once voter casts a vote for e.eleader in e.eterm , it can not cast a vote for a different server in

e.eterm (the specification ensures this: once it increments its currentTerm , it can never vote

again for the same server (Lemma 1); and until then, it safely retains its vote information).

5. e.eleader = f .eleader , since voter voted for e.eleader and voter voted for f .eleader in

e.eterm = f .eterm .

Lemma 3. A leader’s log monotonically grows during its term:

∀ e ∈ elections :

currentTerm[e.leader] = e.term⇒
∀ index ∈ 1..Len(log [e.leader]) :

log ′[e.leader][index] = log [e.leader][index]

This is the Leader Append-Only property of Figure 3.2.

Sketch. As a leader, server i only appends to its log; i won’t ever get an AppendEntries request

from some other server for the same term, since there is at most one leader per term; and i rejects

AppendEntries requests for other terms until increasing its own term.

Proof.

1. Three variables are involved in the goal: elections , currentTerm , and log . We consider the

transitions that change each of these variables in turn; otherwise, the invariant trivially holds

by the inductive hypothesis.

2. When a new election is added to elections (a history variable which maintains informa-

tion about all successful elections), the log of the leader is not changed in the same step

(log ′[e.leader] = log [e.leader]), so the invariant is maintained.

3. currentTerm[e.leader] monotonically increases by Lemma 1, so once e.leader moves to a

new term, it will trivially satisfy the invariant forever after.

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 217

4. log changes either from client requests or AppendEntries requests:

(a) Case: client request:

i. By the specification, the leader only appends an entry to its log, which maintains

the invariant.

(b) Case: AppendEntries request:

i. Only servers with state[i] = Leader can send AppendEntries requests for their

currentTerm .

ii. By Lemma 2, e.leader is the only server which can ever be leader for e.term .

iii. Servers don’t send themselves AppendEntries requests (see specification).

iv. e.leader will process no AppendEntries requests while its term is e.term .

Lemma 4. An 〈index , term〉 pair identifies a log prefix:

∀ l ,m ∈ allLogs :

∀ 〈index , term〉 ∈ l :

〈index , term〉 ∈ m⇒
∀ pindex ∈ 1..index :

l [pindex] = m[pindex]

This is the Log Matching property of Figure 3.2.

Sketch. Only leaders create entries, and they assign the new entries term numbers that will never

be assigned again by other leaders (there’s at most one leader per term). Moreover, the consistency

check in AppendEntries guarantees that when followers accept new entries, they do so in a way

that’s consistent with the leader’s log at the time it sent the entries.

Assertion. If p is a prefix of some log l ∈ allLogs , then allLogs ′ = allLogs ∪{p} maintains the

invariant (the statement in the lemma).

1. This follows immediately from the invariant, since p’s entries match l ’s entries, and p con-

tributes no additional entries.

Proof by induction on an execution.

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 218

1. Initial state: all of the servers’ logs are empty, so allLogs = 〈〉, and the invariant trivially

holds.

2. Inductive step: logs change in one of the following ways:

(a) Case: a leader adds one entry (client request)

i. By the inductive hypothesis, log [leader] ∈ allLogs .

ii. The 〈index , term〉 of the new entry cannot exist in any other entry in any log in

allLogs , since there’s only one leader per term (Lemma 2) and leaders only append

to their logs (Lemma 3).

iii. Then allLogs ′ = allLogs ∪{log [leader] ‖ 〈index , term〉} maintains the invariant.

(b) Case: a follower removes one entry (AppendEntries request m)

i. The invariant still holds, since log ′[follower] is a prefix of log [follower] (by the

Assertion above).

(c) Case: a follower adds one entry (AppendEntries request m)

i. m.mlog is a copy of the leader’s log at the time the leader created the Append-

Entries request.

ii. m.mlog ∈ allLogs by definition of allLogs .

iii. In the two cases below, we show that log ′[follower] is a prefix of m.mlog .

iv. Case: m.mprevLogIndex = 0

A. m.mentries is a prefix of m.mlog .

B. log [follower] is empty, as a necessary condition for accepting the request (the

specification separates transitions for removing a conflicting entry, replying

when there is no longer any change to make, and appending an entry).

C. log ′[follower] = m.mentries upon accepting the request, which is a prefix of

m.mlog .

v. Case: m.mprevLogIndex > 0

A. start ‖ 〈m.mprevLogIndex ,m.mprevLogTerm〉 ‖ m.mentries is a prefix of

m.mlog , where start is some (possibly empty) log prefix.

B. The follower accepts the request by assumption, so its log contains the entry

〈m.mprevLogIndex ,m.mprevLogTerm〉.

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 219

C. By the inductive hypothesis, log [follower] contains the prefix

start ‖ 〈m.mprevLogIndex ,m.mprevLogTerm〉.
D. log ′[follower] = start ‖ 〈m.mprevLogIndex ,m.mprevLogTerm〉 ‖m.mentries

upon accepting the request, which is a prefix of m.mlog .

vi. Because log ′[follower] is a prefix of m.mlog , the invariant is maintained (by the

Assertion above).

Lemma 5. When a follower appends an entry to its log, its log after the append is a prefix of the

leader’s log at the time the leader sent the AppendEntries request:

∀ i ∈ Server :

state[i] 6= Leader ∧Len(log ′[i])> Len(log [i])⇒
∃ m ∈ DOMAIN messages :

∧ m.mtype = AppendEntriesRequest

∧ ∀ index ∈ 1..Len(log ′[i]) :

log ′[i][index] = m.mlog [index]

This restates an argument from the proof of Lemma 4 that is useful in the proofs of other lemmas.

(The argument is difficult to make before Lemma 4, since that lemma’s inductive hypothesis is key;

however, the proof for this lemma follows easily from Lemma 4.)

Sketch. The new entry that the follower appends to its log was also present in the leader’s log. Thus,

by Lemma 4, the follower’s new log is a prefix of what was the leader’s log.

Proof. Logs change in one of the following ways:

1. Case: a leader adds one entry (client request). This invariant only applies to non-leaders.

2. Case: a follower removes one entry (AppendEntries request). This invariant only affects logs

that grow in length.

3. Case: a follower adds one entry (AppendEntries request m):

(a) m.mlog is a copy of the leader’s log at the time the leader created the AppendEntries

request.

(b) Thus, m.mlog ∈ allLogs .

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 220

(c) log ′[i] ∈ allLogs by definition of allLogs .

(d) m.mentries , the entry being added, is the last entry in log ′[i]. (This extends to multiple

entries for implementations that batch entries together.)

(e) m.mentries ∈ m.mlog

(f) By Lemma 4, the index and term of m.mentries uniquely identifies a prefix of m.mlog

equal to log ′[i].

Lemma 6. A server’s current term is always at least as large as the terms in its log:

∀ i ∈ Server :

∀ 〈index , term〉 ∈ log [i] :

term ≤ currentTerm[i]

Sketch. Servers’ current terms monotonically increase. When leaders create new entries, they assign

them their current term. And when followers accept new entries from a leader, their current term

agrees with the leader’s term at the time it sent the entries.

Proof by induction on an execution.

1. Initial state: all logs are empty, so the invariant trivially holds.

2. Inductive step: currentTerm[i] changes:

(a) By Lemma 1, currentTerm ′[i]≥ currentTerm[i], so the invariant is maintained.

3. Inductive step: logs change in one of the following ways:

(a) Case: a leader adds one entry (client request):

i. By the inductive hypothesis, all entries in log [i] have

term ≤ currentTerm[i].

ii. The new entry’s term is currentTerm[i].

iii. Thus, all entries in log ′[i] satisfy the invariant.

(b) Case: a follower removes one entry (AppendEntries request)

i. The invariant still holds, since only the length of the log decreased.

(c) Case: a follower adds one entry (AppendEntries request m):

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 221

i. By the inductive hypothesis, when the leader created the request, its current term

was at least as large as the term of every entry in its log:

∀ 〈index , term〉 ∈ m.mlog : term ≤m.mterm

ii. log ′[i] is a prefix of m.mlog by Lemma 5.

iii. As a necessary condition for accepting the request, currentTerm[i] = m.mterm .

iv. Then currentTerm[i] is at least as large as the term in every entry in log ′[i], and

the invariant is maintained.

Lemma 7. The terms of entries grow monotonically in each log:

∀ l ∈ allLogs :

∀ index ∈ 1..(Len(l)−1) :

l [index].term ≤ l [index +1].term

Sketch. A leader maintains this by assigning new entries its current term, which is always at least as

large as the terms in its log. When followers accept new entries, they are consistent with the leader’s

log at the time it sent the entries.

Proof by induction on an execution.

1. Initial state: all logs are empty, so the invariant holds.

2. Inductive step: logs change in one of the following ways:

(a) Case: a leader adds one entry (client request)

i. The new entry’s term is currentTerm[leader]

ii. currentTerm[leader] is at least as large as the term of any entry in log [leader], by

Lemma 6.

(b) Case: a follower removes one entry (AppendEntries request)

i. The invariant still holds, since only the length of the log decreased.

(c) Case: a follower adds one entry (AppendEntries request m)

i. log ′[follower] is a prefix of m.mlog (by Lemma 5).

ii. m.mlog ∈ allLogs

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 222

iii. By the inductive hypothesis, the terms in m.mlog monotonically grow, so the terms

in log ′[follower] monotonically grow.

Definition 1. An entry 〈index , term〉 is committed at term t if it is present in every leader’s log

following t :

committed(t), {〈index , term〉 :

∀ election ∈ elections :

election.eterm > t ⇒
〈index , term〉 ∈ election.elog}

Definition 2. An entry 〈index , term〉 is immediately committed if it is acknowledged by a quorum

(including the leader) during term . Lemma 8 shows that these entries are committed at term .

immediatelyCommitted , {〈index , term〉 ∈ anyLog :

∧ anyLog ∈ allLogs

∧ ∃ leader ∈ Server , subquorum ∈ SUBSET Server :

∧ subquorum ∪{leader} ∈ Quorum

∧ ∀ i ∈ subquorum :

∃ m ∈ messages :

∧ m.mtype = AppendEntriesResponse

∧ m.msource = i

∧ m.mdest = leader

∧ m.mterm = term

∧ m.mmatchIndex ≥ index}

Lemma 8. Immediately committed entries are committed :

∀ 〈index , term〉 ∈ immediatelyCommitted :

〈index , term〉 ∈ committed(term)

Along with Lemma 9, this is the Leader Completeness property of Figure 3.2.

Sketch. See Section 3.6.3.

Proof.

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 223

1. Consider an entry 〈index , term〉 that is immediately committed.

2. Define

Contradicting , {election ∈ elections :

∧ election.eterm > term

∧ 〈index , term〉 /∈ election.elog}

3. Let election be an element in Contradicting with a minimal term field. That is,

∀ e ∈ Contradicting : election.eterm ≤ e.eterm .

If more than one election has the same term, choose the earliest one. (The specification does

not allow this to happen, but it is safe for a leader to step down and become leader again in

the same term.)

4. It suffices to show a contradiction, which implies Contradicting = φ .

5. Let voter be any server that both votes in election and contains 〈index , term〉 in its log

during term (either it acknowledges the entry as a follower or it was leader). Such a server

must exist since:

(a) A quorum of servers voted in election for it to succeed.

(b) A quorum contains 〈index , term〉 in its log during term , since 〈index , term〉 is imme-

diately committed.

(c) Any two quorums overlap.

6. Let voterLog , election.evoterLog [voter], the voter’s log at the time it cast its vote.

7. The voter contains the entry when it cast its vote during election.eterm . That is,

〈index , term〉 ∈ voterLog :

(a) 〈index , term〉 was in the voter’s log during term .

(b) The voter must have stored the entry in term before voting in election.eterm , since:

i. election.eterm > term .

ii. The voter rejects requests with terms smaller than its current term, and its current

term monotonically increases (Lemma 1).

(c) The voter couldn’t have removed the entry before casting its vote:

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 224

i. Case: No AppendEntriesRequest with mterm < term removes the entry from the

voter’s log, since currentTerm[voter]≥ term upon storing the entry (by Lemma 6),

and the voter rejects requests with terms smaller than

currentTerm[voter].

ii. Case: No AppendEntriesRequest with mterm = term removes the entry from the

voter’s log, since:

A. There is only one leader of term .

B. The leader of term created and therefore contains the entry (Lemma 3).

C. The leader would not send any conflicting requests to voter during term .

iii. Case: No AppendEntriesRequest with mterm > term removes the entry from the

voter’s log, since:

A. Case: mterm > election.eterm:

This can’t happen, since currentTerm[voter] > election.eterm would have

prevented the voter from voting in term .

B. Case: mterm = election.eterm:

Since there is at most one leader per term (Lemma 2), this request would have

to come from election.eleader as a result of an earlier election in the same

term (election.eterm).

Because a leader’s log grows monotonically during its term (by Lemma 3), the

leader could not have had 〈index , term〉 in its log at the start of its term.

Then there exists an earlier election with the same term in Contradicting ; this

is a contradiction.

C. Case mterm < election.eterm:

The leader of mterm must have contained the entry (otherwise its election

would also be Contradicting but have a smaller term than election , which

is a contradiction). Thus, the leader of mterm could not send any conflicting

entries to the voter for this index, nor could it send any conflicting entries for

prior indexes: that it has this entry implies that it has the entire prefix before it

(Lemma 4).

8. The log comparison during elections states the following, since voter granted its vote during

election:

∨ LastTerm(election.elog)> LastTerm(voterLog)

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 225

∨ ∧ LastTerm(election.elog) = LastTerm(voterLog)

∧ Len(election.elog)≥ Len(voterLog)

In the following two steps, we take each of these cases in turn and show a contradiction.

9. Case: LastTerm(election.elog) = LastTerm(voterLog) and

Len(election.elog)≥ Len(voterLog)

(a) The leader of LastTerm(voterLog) monotonically grew its log during its term (by

Lemma 3).

(b) The same leader must have had election.elog as its log at some point, since it created

the last entry.

(c) Thus, voterLog is a prefix of election.elog .

(d) Then 〈index , term〉 ∈ election.elog , since 〈index , term〉 ∈ voterLog .

(e) But election ∈ Contradicting implies that 〈index , term〉 /∈ election.elog .

10. Case: LastTerm(election.elog)> LastTerm(voterLog)

(a) LastTerm(voterLog)≥ term , since 〈index , term〉 ∈ voterLog and terms in logs grow

monotonically (Lemma 7).

(b) election.eterm >LastTerm(election.elog) since servers increment their currentTerm

when starting an election, and Lemma 6 states that a server’s currentTerm is at least as

large as the terms in its log.

(c) Let prior be the election in elections with prior .eterm = LastTerm(election.elog).

Such an election must exist since LastTerm(election.elog) > 0 and a server must win

an election before creating an entry.

(d) By transitivity, we now have the following inequalities:

term ≤
LastTerm(voterLog)<

LastTerm(election.elog) = prior .eterm <

election.eterm

(e) 〈index , term〉 ∈ prior .elog , since prior /∈ Contradicting (election was assumed to

have the lowest term of any election in Contradicting , and prior .eterm < election.eterm).

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 226

(f) prior .elog is a prefix of election.elog since:

i. prior .eleader creates entries with prior .eterm by appending them to its log, which

monotonically grows during prior .eterm from prior .elog .

ii. Thus, any entry with term prior .eterm must follow prior .elog in all logs (by

Lemma 4).

iii. LastTerm(election.elog) = prior .eterm

(g) 〈index , term〉 ∈ election.elog

(h) This is a contradiction, since election.elog was assumed to not contain the committed

entry (election ∈ Contradicting).

Definition 3. An entry 〈index , term〉 is prefix committed at term t if there is another entry that

is committed at term t following it in some log. Lemma 9 shows that these entries are committed at

term t .

prefixCommitted(t), {〈index , term〉 ∈ anyLog :

∧ anyLog ∈ allLogs

∧ ∃ 〈rindex ,rterm〉 ∈ anyLog :

∧ index < rindex

∧ 〈rindex ,rterm〉 ∈ committed(t)}

Lemma 9. Prefix committed entries are committed in the same term:

∀ t : prefixCommitted(t)⊆ committed(t)

Along with Lemma 8, this is the Leader Completeness property of Figure 3.2.

Sketch. If an entry is committed, it identifies a prefix of a log in which every entry is committed,

since those entries will also be present in every future leader’s log.

Proof.

1. Consider an arbitrary entry 〈index , term〉 ∈ prefixCommitted(t).

2. There exists an entry 〈rindex ,rterm〉 ∈ committed(t) following 〈index , term〉 in some log,

by definition of prefixCommitted(t).

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 227

3. 〈rindex ,rterm〉 uniquely identifies the log prefix containing 〈index , term〉 (Lemma 4).

4. Every leader following t contains 〈index , term〉, since every leader following t contains

〈rindex ,rterm〉.

5. 〈index , term〉 ∈ committed(t) by definition of committed(t).

Theorem 1. Servers only apply entries that are committed in their current term:

∀ i ∈ Server :

∧ commitIndex [i]≤ Len(log [i])

∧ ∀ 〈index , term〉 ∈ log [i] :

index ≤ commitIndex [i]⇒
〈index , term〉 ∈ committed(currentTerm[i])

This is equivalent to the State Machine Safety property of Figure 3.2. (The bound on the commit

index is needed to strengthen the inductive hypothesis.)

Sketch. A leader only advances its commitIndex to cover entries that are immediately committed

or prefix committed. Followers update their commitIndex from the leader’s only when they have a

prefix of the leader’s log.

Proof by induction on an execution.

1. Initial state: trivially holds for empty logs (and commitIndex [i] is initialized to 0).

2. Inductive step: the set of entries committed at currentTerm[i] changes:

(a) Once an entry is committed at currentTerm[i], all leaders of subsequent terms will

have the entry (by the definition of committed).

(b) Thus, the set of committed entries at currentTerm[i] monotonically grows.

3. Inductive step: commitIndex [i] changes:

(a) When commitIndex [i] decreases (if implementations allow this to happen), the induc-

tive hypothesis suffices to show the invariant holds.

(b) When commitIndex [i] increases, it covers entries present in i ’s log that are committed:

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 228

i. Case: follower completes accepting AppendEntries request m:

A. Upon processing the request, the follower’s log is a prefix of a prior version of

the leader’s log, m.mlog (by Lemma 5).

B. Every entry up through commitIndex ′[i] in m.mlog is committed by the in-

ductive hypothesis (they were marked committed in the leader’s log when it

sent the request).

ii. Case: leader i processes AppendEntries response:

A. If the leader sets a new commitIndex , the conditions in the specification ensure

that commitIndex ′[i] ∈ immediatelyCommitted .

B. Every entry in the leader’s log with index up to commitIndex ′[i] is prefix com-

mitted at currentTerm[i].

4. Inductive step: currentTerm[i] changes:

(a) By Lemma 1, currentTerm ′[i]> currentTerm[i].

(b) committed(currentTerm[i])⊆ committed(currentTerm ′[i]) by the definition of

committed .

(c) Thus, the inductive hypothesis suffices to show the invariant holds.

5. Inductive step: logs change in one of the following ways:

(a) Case: a leader adds one entry (client request):

i. Newly created entries are not marked committed, so the invariant holds.

(b) Case: a follower removes one entry (AppendEntries request m):

i. Case: the removed entry was not marked committed on the follower:

The inductive hypothesis suffices to show the invariant holds.

ii. Case: the removed entry was marked committed on the follower:

A. m.mterm = currentTerm[i], since the follower accepted the request.

B. The removed entry is not in m.mlog , since it conflicts with the request.

C. The removed entry is not present in m.msource’s log at the start of its term (by

Lemma 3).

D. The election for m.mterm did not contain the removed entry.

E. The removed entry is not committed at currentTerm[i].

APPENDIX B. SAFETY PROOF AND FORMAL SPECIFICATION 229

F. This contradicts the inductive hypothesis; this case cannot occur.

(c) Case: a follower adds one entry (AppendEntries request m):

i. Case: the new entry is not marked committed on the follower:

The inductive hypothesis suffices to show the invariant holds.

ii. Case: the new entry is marked committed on the follower:

commitIndex [i] must increase (which was already handled above).

Bibliography

[1] Apache Cassandra project website. https://cassandra.apache.org. 60, 148

[2] Apache Hadoop documentation: HDFS high availability, 2012. https:

//hadoop.apache.org/docs/r2.0.2-alpha/hadoop-yarn/hadoop-

yarn-site/HDFSHighAvailability.html. 1

[3] Apache HBase project website. https://hbase.apache.org. 139

[4] Azure Active Directory (AAD) Availability Proxy for .Net source code. https:

//github.com/WindowsAzureAD/availability-proxy-for-rest-

services. 148

[5] BAKER, J., BOND, C., CORBETT, J. C., FURMAN, J., KHORLIN, A., LARSON, J., LEON,

J.-M., LI, Y., LLOYD, A., AND YUSHPRAKH, V. Megastore: providing scalable, highly

available storage for interactive services. In Proc. CIDR’11, Conference on Innovative Data

System Research (2011), pp. 223–234. 7, 147

[6] Basho Riak project website. http://basho.com/riak. 148

[7] BERTOT, Y., CASTRAN, P., HUET, G., AND PAULIN-MOHRING, C. Interactive theorem

proving and program development : Coq’Art : the calculus of inductive constructions. Texts

in Theoretical Computer Science. Springer, 2004. 115

[8] BIELY, M., MILOSEVIC, Z., SANTOS, N., AND SCHIPER, A. S-Paxos: offloading the leader

for high throughput state machine replication. In Proc. SRDS’12, IEEE Symposium on Reli-

able Distributed Systems (2012), pp. 111–120. 163

[9] BLOMSTEDT, J. Bringing consistency to Riak. RICON West (conference talk), 2013. http:

//basho.com/ricon-west-videos-strong-consistency-in-riak/. 148

230

https://cassandra.apache.org
https://hadoop.apache.org/docs/r2.0.2-alpha/hadoop-yarn/hadoop-yarn-site/HDFSHighAvailability.html
https://hadoop.apache.org/docs/r2.0.2-alpha/hadoop-yarn/hadoop-yarn-site/HDFSHighAvailability.html
https://hadoop.apache.org/docs/r2.0.2-alpha/hadoop-yarn/hadoop-yarn-site/HDFSHighAvailability.html
https://hbase.apache.org
https://github.com/WindowsAzureAD/availability-proxy-for-rest-services
https://github.com/WindowsAzureAD/availability-proxy-for-rest-services
https://github.com/WindowsAzureAD/availability-proxy-for-rest-services
http://basho.com/riak
http://basho.com/ricon-west-videos-strong-consistency-in-riak/
http://basho.com/ricon-west-videos-strong-consistency-in-riak/

BIBLIOGRAPHY 231

[10] BOICHAT, R., DUTTA, P., FRØLUND, S., AND GUERRAOUI, R. Deconstructing Paxos.

SIGACT News 34, 1 (Mar. 2003), 47–67. 168

[11] BURROWS, M. The Chubby lock service for loosely-coupled distributed systems. In Proc.

OSDI’06, USENIX Symposium on Operating Systems Design and Implementation (2006),

USENIX, pp. 335–350. 5, 48, 147

[12] CALDER, B., WANG, J., OGUS, A., NILAKANTAN, N., SKJOLSVOLD, A., MCKELVIE,

S., XU, Y., SRIVASTAV, S., WU, J., SIMITCI, H., HARIDAS, J., UDDARAJU, C., KHATRI,

H., EDWARDS, A., BEDEKAR, V., MAINALI, S., ABBASI, R., AGARWAL, A., HAQ, M.

F. U., HAQ, M. I. U., BHARDWAJ, D., DAYANAND, S., ADUSUMILLI, A., MCNETT, M.,

SANKARAN, S., MANIVANNAN, K., AND RIGAS, L. Windows Azure Storage: a highly

available cloud storage service with strong consistency. In Proc. SOSP’11, ACM Symposium

on Operating Systems Principles (2011), ACM, pp. 143–157. 148

[13] CASTRO, M., AND LISKOV, B. Practical Byzantine fault tolerance. In Proc. OSDI’99,

USENIX Symposium on Operating Systems Design and Implementation (1999), USENIX,

pp. 173–186. 147

[14] Ceph documentation: monitor config reference. http://ceph.com/docs/master/

rados/configuration/mon-config-ref/. 148

[15] CHANDRA, T. D., GRIESEMER, R., AND REDSTONE, J. Paxos made live: an engineering

perspective. In Proc. PODC’07, ACM Symposium on Principles of Distributed Computing

(2007), ACM, pp. 398–407. 9, 10, 48, 115, 147, 160, 174

[16] CHANDRA, T. D., AND TOUEG, S. Unreliable failure detectors for reliable distributed sys-

tems. Journal of the ACM 43, 2 (Mar. 1996), 225–267. 151

[17] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WALLACH, D. A., BURROWS, M.,

CHANDRA, T., FIKES, A., AND GRUBER, R. E. Bigtable: a distributed storage system for

structured data. In Proc. OSDI’06, USENIX Symposium on Operating Systems Design and

Implementation (2006), USENIX, pp. 205–218. 58, 60

[18] CHUN, B.-G., RATNASAMY, S., AND KOHLER, E. NetComplex: a complexity metric for

networked system designs. In Proc. NSDI’08, USENIX Conference on Networked Systems

Design and Implementation (2008), USENIX, pp. 393–406. 169

http://ceph.com/docs/master/rados/configuration/mon-config-ref/
http://ceph.com/docs/master/rados/configuration/mon-config-ref/

BIBLIOGRAPHY 232

[19] CORBET, J. Btrfs: subvolumes and snapshots, Jan. 2014. http://lwn.net/

Articles/579009/. 57

[20] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST, C., FURMAN, J. J., GHE-

MAWAT, S., GUBAREV, A., HEISER, C., HOCHSCHILD, P., HSIEH, W., KANTHAK, S.,

KOGAN, E., LI, H., LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D., QUINLAN, S.,

RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK, M., TAYLOR, C., WANG, R., AND WOOD-

FORD, D. Spanner: Google’s globally-distributed database. In Proc. OSDI’12, USENIX

Symposium on Operating Systems Design and Implementation (2012), USENIX, pp. 251–

264. 7, 147

[21] COUSINEAU, D., DOLIGEZ, D., LAMPORT, L., MERZ, S., RICKETTS, D., AND

VANZETTO, H. TLA+ Proofs. In Proc. FM’12, Symposium on Formal Methods (2012),

D. Giannakopoulou and D. Méry, Eds., vol. 7436 of Lecture Notes in Computer Science,

Springer, pp. 147–154. 114

[22] DEAN, J. Large-scale distributed systems at Google: current systems and future directions.

LADIS’09: ACM SIGOPS International Workshop on Large Scale Distributed Systems and

Middleware (keynote talk), 2009. 1

[23] DILL, D. L., DREXLER, A. J., HU, A. J., AND YANG, C. H. Protocol verification as

a hardware design aid. In Proc. ICCD’92, International Conference on Computer Design

(1992), IEEE, pp. 522–525. 114

[24] DOW, S. P., GLASSCO, A., KASS, J., SCHWARZ, M., SCHWARTZ, D. L., AND KLEMMER,

S. R. Parallel prototyping leads to better design results, more divergence, and increased self-

efficacy. ACM Transactions on Computer-Human Interaction 17, 4 (Dec. 2010), 18:1–18:24.

109

[25] ELECTRONIC FRONTIER FOUNDATION. Patents. https://www.eff.org/patent.

164

[26] ELLIS, J. Lightweight transactions in Cassandra 2.0, 2013. http://www.datastax.

com/dev/blog/lightweight-transactions-in-cassandra-2-0. 148

[27] ESCRIVA, R., WONG, B., AND SIRER, E. G. HyperDex: a distributed, searchable key-value

store. In Proc. SIGCOMM’12, ACM SIGCOMM Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication (2012), ACM, pp. 25–36. 60

http://lwn.net/Articles/579009/
http://lwn.net/Articles/579009/
https://www.eff.org/patent
http://www.datastax.com/dev/blog/lightweight-transactions-in-cassandra-2-0
http://www.datastax.com/dev/blog/lightweight-transactions-in-cassandra-2-0

BIBLIOGRAPHY 233

[28] FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S. Impossibility of distributed con-

sensus with one faulty process. Journal of the ACM 32, 2 (Apr. 1985), 374–382. 117

[29] FONG, Z., AND SHROFF, R. HydraBase: The evolution of HBase@Facebook, 2014.

https://code.facebook.com/posts/321111638043166/hydrabase-

the-evolution-of-hbase-facebook/. 139

[30] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google file system. In Proc.

SOSP’03, ACM Symposium on Operating Systems Principles (2003), ACM, pp. 29–43. 7,

163

[31] GILL, P., JAIN, N., AND NAGAPPAN, N. Understanding network failures in data centers:

measurement, analysis, and implications. In Proc. SIGCOMM’11, ACM SIGCOMM Confer-

ence on Applications, Technologies, Architectures, and Protocols for Computer Communica-

tion (2011), ACM, pp. 350–361. 1

[32] GLENDENNING, L., BESCHASTNIKH, I., KRISHNAMURTHY, A., AND ANDERSON, T.

Scalable consistency in Scatter. In Proc. SOSP’11, ACM Symposium on Operating Systems

Principles (2011), ACM, pp. 15–28. 7

[33] GRAY, C., AND CHERITON, D. Leases: an efficient fault-tolerant mechanism for distributed

file cache consistency. In Proc. SOSP’89, ACM Symposium on Operating Systems Principles

(1989), ACM, pp. 202–210. 74

[34] HERLIHY, M. P., AND WING, J. M. Linearizability: a correctness condition for concurrent

objects. ACM Transactions on Programming Languages and Systems 12 (July 1990), 463–

492. 66, 70

[35] HOCH, E. Configuration changes. raft-dev mailing list, Feb. 2014. https://groups.

google.com/d/msg/raft-dev/xux5HRxH3Ic/mz_PDK-qMJgJ. vii

[36] HOWARD, H. ocaml-raft source code. https://github.com/heidi-ann/ocaml-

raft. 115

[37] HOWARD, H. ARC: analysis of Raft consensus. Tech. Rep. UCAM-CL-TR-857, Univer-

sity of Cambridge, Computer Laboratory, July 2014. http://www.cl.cam.ac.uk/

techreports/UCAM-CL-TR-857.pdf. 115, 130

https://code.facebook.com/posts/321111638043166/hydrabase-the-evolution-of-hbase-facebook/
https://code.facebook.com/posts/321111638043166/hydrabase-the-evolution-of-hbase-facebook/
https://groups.google.com/d/msg/raft-dev/xux5HRxH3Ic/mz_PDK-qMJgJ
https://groups.google.com/d/msg/raft-dev/xux5HRxH3Ic/mz_PDK-qMJgJ
https://github.com/heidi-ann/ocaml-raft
https://github.com/heidi-ann/ocaml-raft
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-857.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-857.pdf

BIBLIOGRAPHY 234

[38] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B. ZooKeeper: wait-free coordi-

nation for Internet-scale systems. In Proc. ATC’10, USENIX Annual Technical Conference

(2010), USENIX, pp. 145–158. 1, 5, 7, 50, 149, 160

[39] HyperLevelDB performance benchmarks. http://hyperdex.org/performance/

leveldb/. 60

[40] ISARD, M. Autopilot: automatic data center management. SIGOPS Operating Systems Re-

view 41, 2 (Apr. 2007), 60–67. 148

[41] JUNQUEIRA, F. P., REED, B. C., AND SERAFINI, M. Dissecting Zab. Tech. Rep. YL-

2010-0007, Yahoo! Research, 2010. http://labs.yahoo.com/files/YL-2010-

007.pdf. 168

[42] JUNQUEIRA, F. P., REED, B. C., AND SERAFINI, M. Zab: high-performance broadcast for

primary-backup systems. In Proc. DSN’11, IEEE/IFIP Conference on Dependable Systems

and Networks (2011), IEEE, pp. 245–256. 2, 137, 149

[43] KANTHAK, S. Spanner: Google’s distributed database. Strange Loop (conference talk), Sept.

2013. http://www.infoq.com/presentations/spanner-distributed-

google. 148

[44] KINGSBURY, K. Jepsen series of articles on network partitions. http://aphyr.com/

tags/jepsen, 2013–2014. 1

[45] KINGSBURY, K. Call me maybe: etcd and Consul. http://aphyr.com/posts/316-

call-me-maybe-etcd-and-consul, 2014. 72, 115

[46] KIRSCH, J., AND AMIR, Y. Paxos for system builders: an overview. In Proc. LADIS’08,

Workshop on Large-Scale Distributed Systems and Middleware (2008), ACM, pp. 3:1–3:6.

9, 148

[47] LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Communica-

tions of the ACM 21, 7 (July 1978), 558–565. 15

[48] LAMPORT, L. The part-time parliament. ACM Transactions on Computer Systems 16, 2

(May 1998), 133–169. 1, 8, 38, 148, 156, 168

http://hyperdex.org/performance/leveldb/
http://hyperdex.org/performance/leveldb/
http://labs.yahoo.com/files/YL-2010-007.pdf
http://labs.yahoo.com/files/YL-2010-007.pdf
http://www.infoq.com/presentations/spanner-distributed-google
http://www.infoq.com/presentations/spanner-distributed-google
http://aphyr.com/tags/jepsen
http://aphyr.com/tags/jepsen
http://aphyr.com/posts/316-call-me-maybe-etcd-and-consul
http://aphyr.com/posts/316-call-me-maybe-etcd-and-consul

BIBLIOGRAPHY 235

[49] LAMPORT, L. Paxos made simple. ACM SIGACT News 32, 4 (Dec. 2001), 18–25. 1, 8, 9,

82, 148, 156

[50] LAMPORT, L. Specifying Systems, The TLA+ Language and Tools for Hardware and Soft-

ware Engineers. Addison-Wesley, 2002. 112, 201

[51] LAMPORT, L. Generalized consensus and Paxos. Tech. Rep. MSR-TR-2005-33, Microsoft,

Mar. 2005. https://research.microsoft.com/pubs/64631/tr-2005-33.

pdf. 166

[52] LAMPORT, L. Fast Paxos. Distributed Computing 19, 2 (2006), 79–103. 165

[53] LAMPORT, L. Fast Paxos recovery, June 2009. US Patent 7,555,516. 165

[54] LAMPORT, L. Byzantizing Paxos by refinement. In Proc. DISC’11, International Symposium

on Distributed Computing (2011), Springer-Verlag, pp. 211–224. 168

[55] LAMPORT, L. Personal communications, including TLAPS proof for single-decree Paxos,

Feb. 2013. 168

[56] LAMPORT, L., HYDRIE, A., AND ACHLIOPTAS, D. Multi-leader distributed system, Aug.

2007. US Patent 7,260,611. 164, 166

[57] LAMPORT, L., AND MASSA, M. Cheap Paxos. In Proc. DSN’04, Conference on Dependable

Systems and Networks (2004), IEEE, pp. 307–314. 167

[58] LAMPORT, L., AND MASSA, M. Cheap Paxos, Dec. 2010. US Patent 7,856,502. 167

[59] LAMPORT, L., AND PAULSON, L. C. Should your specification language be typed? ACM

Transactions on Programming Languages and Systems 21, 3 (May 1999), 502–526. 114

[60] LAMPSON, B. W. How to build a highly available system using consensus. In Distributed

Algorithms, O. Baboaglu and K. Marzullo, Eds. Springer-Verlag, 1996, pp. 1–17. 8, 148

[61] LAMPSON, B. W. The ABCD’s of Paxos. PODC’01: ACM Symposium on Principles of Dis-

tributed Computing (invited talk), 2001. http://research.microsoft.com/en-

us/um/people/blampson/65-ABCDPaxos/Abstract.html. 8, 148

[62] LevelDB: a fast and lightweight key/value database library by Google (source code).

https://code.google.com/p/leveldb/. 60

https://research.microsoft.com/pubs/64631/tr-2005-33.pdf
https://research.microsoft.com/pubs/64631/tr-2005-33.pdf
http://research.microsoft.com/en-us/um/people/blampson/65-ABCDPaxos/Abstract.html
http://research.microsoft.com/en-us/um/people/blampson/65-ABCDPaxos/Abstract.html
https://code.google.com/p/leveldb/

BIBLIOGRAPHY 236

[63] LevelDB documentation: file layout and compactions. https://leveldb.

googlecode.com/svn/trunk/doc/impl.html. 49

[64] Linux documentation: tmpfs filesystem. https://www.kernel.org/doc/

Documentation/filesystems/tmpfs.txt. 116

[65] LISKOV, B. From Viewstamped Replication to Byzantine fault tolerance. In Replication

(2010), B. Charron-Bost, F. Pedone, and A. Schiper, Eds., vol. 5959 of Lecture Notes in

Computer Science, Springer, pp. 121–149. 147

[66] LISKOV, B., AND COWLING, J. Viewstamped Replication revisited. Tech. Rep. MIT-

CSAIL-TR-2012-021, MIT, July 2012. http://pmg.csail.mit.edu/papers/vr-

revisited.pdf. 2, 3, 22, 149, 156, 160, 168

[67] LISKOV, B., GHEMAWAT, S., GRUBER, R., JOHNSON, P., SHRIRA, L., AND WILLIAMS,

M. Replication in the Harp file system. In Proc. SOSP’91, ACM Symposium on Operating

Systems Principles (1991), ACM, pp. 226–238. 149, 167

[68] LJUNGBLAD, M. archie/raft source code. https://github.com/archie/raft. 139

[69] LORCH, J. R., ADYA, A., BOLOSKY, W. J., CHAIKEN, R., DOUCEUR, J. R., AND HOW-

ELL, J. The SMART way to migrate replicated stateful services. In Proc. EuroSys’06, ACM

SIGOPS/EuroSys European Conference on Computer Systems (2006), ACM, pp. 103–115.

8, 156

[70] LVM2 (Linux Volume Management) resource page. https://sourceware.org/

lvm2/. 57

[71] LYNCH, N. A. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996. 6

[72] MACCORMICK, J., MURPHY, N., NAJORK, M., THEKKATH, C. A., AND ZHOU, L. Box-

wood: abstractions as the foundation for storage infrastructure. In Proc. OSDI’04, USENIX

Symposium on Operating Systems Design and Implementation (2004), USENIX, pp. 105–

120. 162

[73] MALAWSKI, K. akka-raft source code. https://github.com/ktoso/akka-raft.

139

https://leveldb.googlecode.com/svn/trunk/doc/impl.html
https://leveldb.googlecode.com/svn/trunk/doc/impl.html
https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
http://pmg.csail.mit.edu/papers/vr-revisited.pdf
http://pmg.csail.mit.edu/papers/vr-revisited.pdf
https://github.com/archie/raft
https://sourceware.org/lvm2/
https://sourceware.org/lvm2/
https://github.com/ktoso/akka-raft

BIBLIOGRAPHY 237

[74] MAO, Y., JUNQUEIRA, F. P., AND MARZULLO, K. Mencius: building efficient replicated

state machines for WANs. In Proc. OSDI’08, USENIX Symposium on Operating Systems

Design and Implementation (2008), USENIX, pp. 369–384. 164

[75] MARTIN, J. Raft.js (kanaka) source code. https://github.com/kanaka/raft.js.

139

[76] MARTIN, J.-P., AND ALVISI, L. Fast Byzantine consensus. In IEEE Transactions on De-

pendable and Secure Computing (2005), pp. 402–411. 147

[77] MAZIÈRES, D. Paxos Made Practical. [Despite its name, the subject of this paper more

closely resembles Viewstamped Replication, not Paxos.] http://www.scs.stanford.

edu/˜dm/home/papers/paxos.pdf, Jan. 2007. 9, 149, 157, 158

[78] MAZIÈRES, D. Traditional Paxos (slides), 2013. https://ramcloud.stanford.

edu/˜ongaro/dmpaxos.pdf. 82

[79] MORARU, I., ANDERSEN, D. G., AND KAMINSKY, M. A proof of correctness for Egalitar-

ian Paxos. Tech. Rep. CMU-PDL-13-111, Parallel Data Laboratory, Carnegie Mellon Univer-

sity, 2013. http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-13-

111.pdf. 168, 169

[80] MORARU, I., ANDERSEN, D. G., AND KAMINSKY, M. There is more consensus in egal-

itarian parliaments. In Proc. SOSP’13, ACM Symposium on Operating Systems Principles

(2013), ACM, pp. 358–372. 166

[81] MURTHY, A. Apache Hadoop 2.0 (alpha) released, 2012. http://hortonworks.com/

blog/apache-hadoop-2-0-alpha-released/. 1

[82] OKI, B. M. Viewstamped Replication for highly available distributed systems. PhD the-

sis, Massachusetts Institute of Technology, Aug. 1988. MIT-LCS-TR-423. http://pmg.

csail.mit.edu/papers/MIT-LCS-TR-423.pdf. 2, 149

[83] OKI, B. M., AND LISKOV, B. H. Viewstamped Replication: a new primary copy method

to support highly-available distributed systems. In Proc. PODC’88, ACM Symposium on

Principles of Distributed Computing (1988), ACM, pp. 8–17. 2, 3, 149

[84] O’NEIL, P., CHENG, E., GAWLICK, D., AND O’NEIL, E. The log-structured merge-tree

(LSM-tree). Acta Informatica 33, 4 (1996), 351–385. 58, 60

https://github.com/kanaka/raft.js
http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
https://ramcloud.stanford.edu/~ongaro/dmpaxos.pdf
https://ramcloud.stanford.edu/~ongaro/dmpaxos.pdf
http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-13-111.pdf
http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-13-111.pdf
http://hortonworks.com/blog/apache-hadoop-2-0-alpha-released/
http://hortonworks.com/blog/apache-hadoop-2-0-alpha-released/
http://pmg.csail.mit.edu/papers/MIT-LCS-TR-423.pdf
http://pmg.csail.mit.edu/papers/MIT-LCS-TR-423.pdf

BIBLIOGRAPHY 238

[85] ONGARO, D. Availability simulator for Raft (source code). https://github.com/

ongardie/availsim. 134

[86] ONGARO, D. LogCabin source code. https://github.com/logcabin/logcabin.

4, 45, 132, 139, 144

[87] ONGARO, D. Formal specification for Raft (source file), 2014. https://ramcloud.

stanford.edu/˜ongaro/raft.tla. 202

[88] ONGARO, D., AND OUSTERHOUT, J. Raft user study materials. http://ramcloud.

stanford.edu/˜ongaro/userstudy/. 77, 108, 148

[89] ONGARO, D., AND OUSTERHOUT, J. In Search of an Understandable Consensus Algorithm.

In Proc. ATC’14, USENIX Annual Technical Conference (2014), USENIX. v

[90] OUSTERHOUT, J., AGRAWAL, P., ERICKSON, D., KOZYRAKIS, C., LEVERICH, J.,

MAZIÈRES, D., MITRA, S., NARAYANAN, A., ONGARO, D., PARULKAR, G., ROSEN-

BLUM, M., RUMBLE, S. M., STRATMANN, E., AND STUTSMAN, R. The case for

RAMCloud. Communications of the ACM 54 (July 2011), 121–130. 7, 139

[91] PRISCO, R. D., LAMPSON, B. W., AND LYNCH, N. A. Revisiting the Paxos algorithm.

Theoretical Computer Science 243, 1-2 (2000), 35–91. 168

[92] Raft consensus algorithm website. http://raftconsensus.github.io. v, 139

[93] RAO, J. Intra-cluster replication for Apache Kafka. ApacheCon NA (conference talk),

Feb. 2013. http://www.slideshare.net/junrao/kafka-replication-

apachecon2013. 167

[94] REED, B. Personal communications, May 17, 2013. 152

[95] REED, B., AND BOHANNON, P. Restoring a database using fuzzy snapshot techniques, May

2010. US Patent 7,725,440. 161

[96] RocksDB: a persistent key-value store for fast storage environments. http://rocksdb.

org. 60

[97] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and implementation of a log-

structured file system. ACM Transactions on Computer Systems 10 (Feb. 1992), 26–52. 58,

59

https://github.com/ongardie/availsim
https://github.com/ongardie/availsim
https://github.com/logcabin/logcabin
https://ramcloud.stanford.edu/~ongaro/raft.tla
https://ramcloud.stanford.edu/~ongaro/raft.tla
http://ramcloud.stanford.edu/~ongaro/userstudy/
http://ramcloud.stanford.edu/~ongaro/userstudy/
http://raftconsensus.github.io
http://www.slideshare.net/junrao/kafka-replication-apachecon2013
http://www.slideshare.net/junrao/kafka-replication-apachecon2013
http://rocksdb.org
http://rocksdb.org

BIBLIOGRAPHY 239

[98] RUMBLE, S. M. Memory and object management in RAMCloud. PhD thesis, Stanford

University, Mar. 2014. http://purl.stanford.edu/bx554qk6640. 49, 58, 59, 60

[99] RUSEK, D., AND BAILLY, A. Barge source code. https://github.com/mgodave/

barge. 139

[100] SANTOS, N., AND SCHIPER, A. Tuning Paxos for high-throughput with batching and

pipelining. In Proc. ICDCN’12, International Conference on Distributed Computing and

Networking (2012), Springer-Verlag, pp. 153–167. 163

[101] SCHIPER, N., RAHLI, V., VAN RENESSE, R., BICKFORD, M., AND CONSTABLE, R. L.

Developing correctly replicated databases using formal tools. In Proc. DSN’14, IEEE/IFIP

International Conference on Dependable Systems and Networks (2014). 115, 168, 169

[102] SCHNEIDER, F. B. Implementing fault-tolerant services using the state machine approach: a

tutorial. ACM Computing Surveys 22, 4 (Dec. 1990), 299–319. 5

[103] SCHROEDER, B., AND GIBSON, G. A. Disk failures in the real world: what does an MTTF

of 1,000,000 hours mean to you? In Proc. FAST’07, USENIX Conference on File and Storage

Technologies (2007), USENIX, pp. 1–16. 1

[104] SHRAER, A., REED, B., MALKHI, D., AND JUNQUEIRA, F. Dynamic reconfiguration of

primary/backup clusters. In Proc. ATC’12, USENIX Annual Technical Conference (2012),

USENIX, pp. 425–437. 149

[105] SHVACHKO, K., KUANG, H., RADIA, S., AND CHANSLER, R. The Hadoop distributed file

system. In Proc. MSST’10, IEEE Symposium on Mass Storage Systems and Technologies

(2010), IEEE, pp. 1–10. 7

[106] STONE, A. J. Rafter source code. https://github.com/andrewjstone/rafter.

139

[107] TRANGEZ, N. Kontiki source code. https://github.com/NicolasT/kontiki.

139

[108] VAN RENESSE, R. Paxos made moderately complex. Tech. rep., Cornell University, 2012.

http://www.cs.cornell.edu/home/rvr/Paxos/paxos.pdf. 9, 148

http://purl.stanford.edu/bx554qk6640
https://github.com/mgodave/barge
https://github.com/mgodave/barge
https://github.com/andrewjstone/rafter
https://github.com/NicolasT/kontiki
http://www.cs.cornell.edu/home/rvr/Paxos/paxos.pdf

BIBLIOGRAPHY 240

[109] VAN RENESSE, R., SCHIPER, N., AND SCHNEIDER, F. B. Vive la différence: Paxos vs.

Viewstamped Replication vs. Zab. IEEE Transactions on Dependable and Secure Computing

(2014). 147

[110] VAN RENESSE, R., AND SCHNEIDER, F. B. Chain replication for supporting high through-

put and availability. In Proc. OSDI’04, USENIX Symposium on Operating Systems Design

and Implementation (2004), USENIX, pp. 91–104. 163

[111] VARDA, K. Protocol Buffers: Google’s data interchange format, 2008. http://google-

opensource.blogspot.com/2008/07/protocol-buffers-googles-

data.html. 132, 144

[112] WEIL, S., BRANDT, S. A., MILLER, E. L., LONG, D. D. E., AND MALTZAHN, C. Ceph:

a scalable, high-performance distributed file system. In Proc. OSDI’06, USENIX Symposium

on Operating Systems Design and Implementation (2006), USENIX, pp. 307–320. 148

[113] ZOOKEEPER-107: allow dynamic changes to server cluster membership (issue tracker).

https://issues.apache.org/jira/browse/ZOOKEEPER-107. 149

http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html
https://issues.apache.org/jira/browse/ZOOKEEPER-107

	Abstract
	Preface
	Acknowledgments
	Contents
	List of tables
	List of figures
	Introduction
	Motivation
	Achieving fault tolerance with replicated state machines
	Common use cases for replicated state machines
	What's wrong with Paxos?

	Basic Raft algorithm
	Designing for understandability
	Raft overview
	Raft basics
	Leader election
	Log replication
	Safety
	Election restriction
	Committing entries from previous terms
	Safety argument

	Follower and candidate crashes
	Persisted state and server restarts
	Timing and availability
	Leadership transfer extension
	Conclusion

	Cluster membership changes
	Safety
	Availability
	Catching up new servers
	Removing the current leader
	Disruptive servers
	Availability argument

	Arbitrary configuration changes using joint consensus
	System integration
	Conclusion

	Log compaction
	Snapshotting memory-based state machines
	Snapshotting concurrently
	When to snapshot
	Implementation concerns

	Snapshotting disk-based state machines
	Incremental cleaning approaches
	Basics of log cleaning
	Basics of log-structured merge trees
	Log cleaning and log-structured merge trees in Raft

	Alternative: leader-based approaches
	Storing snapshots in the log
	Leader-based approach for very small state machines

	Conclusion

	Client interaction
	Finding the cluster
	Routing requests to the leader
	Implementing linearizable semantics
	Processing read-only queries more efficiently
	Using clocks to reduce messaging for read-only queries

	Conclusion

	Raft user study
	Study questions and hypotheses
	Discussion about the methods
	Participants
	Teaching
	Testing understanding
	Grading
	Survey
	Pilots

	Methods
	Study design
	Participants
	Materials
	Dependent measures
	Procedure

	Results
	Quizzes
	Survey

	Discussion about the experimental approach
	Conclusion

	Correctness
	Formal specification and proof for basic Raft algorithm
	Discussion of prior verification attempts
	Building correct implementations
	Conclusion

	Leader election evaluation
	How fast will Raft elect a leader with no split votes?
	How common are split votes?
	How fast will Raft elect a leader when split votes are possible?
	How fast will the complete Raft algorithm elect a leader in real networks?
	What happens when logs differ?
	Preventing disruptions when a server rejoins the cluster
	Conclusion

	Implementation and performance
	Implementation
	Threaded architecture

	Performance considerations
	Writing to the leader's disk in parallel
	Batching and pipelining

	Preliminary performance results
	Conclusion

	Related work
	Overview of consensus algorithms
	Paxos
	Leader-based algorithms

	Leader election
	Detecting and neutralizing a failed leader
	Selecting a new leader and ensuring it has all committed entries

	Log replication and commitment
	Cluster membership changes
	-based approaches
	Changing membership during leader election
	Zab

	Log compaction
	Replicated state machines vs. primary copy approach
	Performance
	Reducing leader bottleneck
	Reducing number of servers (witnesses)
	Avoiding persistent storage writes

	Correctness
	Understandability

	Conclusion
	Lessons learned
	On complexity
	On bridging theory and practice
	On finding research problems

	Final comments

	User study materials
	Raft quiz
	Paxos quiz
	Survey
	Supporting materials

	Safety proof and formal specification
	Conventions
	Specification
	Proof

	Bibliography

